
§1 Introduction
§2 Infinitesimal analysis of the Hilbert scheme

§3 Obstruction to deforming curves on a quartic surface

§1.1 Definition of the Hilbert scheme
§1.2 Infinitesimal property of the Hilbert scheme
§1.3 Mumford’s example

.

......

Introduction to Hilbert schemes of curves on
a 3-fold

Hirokazu Nasu

Tokai University

Autust 30, 2013,
Workshop in Algebraic Geometry in Sapporo

Hirokazu Nasu Introduction to Hilbert schemes of curves on a 3-fold



§1 Introduction
§2 Infinitesimal analysis of the Hilbert scheme

§3 Obstruction to deforming curves on a quartic surface

§1.1 Definition of the Hilbert scheme
§1.2 Infinitesimal property of the Hilbert scheme
§1.3 Mumford’s example

§1 Introduction

Hirokazu Nasu Introduction to Hilbert schemes of curves on a 3-fold



§1 Introduction
§2 Infinitesimal analysis of the Hilbert scheme

§3 Obstruction to deforming curves on a quartic surface

§1.1 Definition of the Hilbert scheme
§1.2 Infinitesimal property of the Hilbert scheme
§1.3 Mumford’s example

Hilbert scheme

We work over a field k = k with char k = 0.

V ⊂ Pn: a closed subscheme.
OV(1): a very ample line bundle on V.
X ⊂ V: a closed subscheme.
P = P(X) = χ(X,OX(n)): the Hilbert polynomial of X.

Then there exists a proj. scheme H, called the Hilbert
scheme of V, parametrizing all closed subschemes X′ of V
with the same Hilbert poly. P as X.
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.
Theorem (Grothendieck’60)
..

......

There exists a proj. scheme H and a closed subscheme
W ⊂ V × H (universal subscheme), flat over H, such that

...1 the fibers Wh ⊂ W over a closed point h ∈ H are closed
subschemes of V with the same Hilb. poly. P(Wh) = P,

...2 For any scheme T and a closed subscheme W′ ⊂ V × T
with the above prop. 1⃝, there exists a unique morphism
φ : T → H such that W′ = W ×H T as a subscheme of
V × T (the universal property of H).
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.
Notation..

......

Hilb V = the (full) Hilbert scheme of V∪
open

Hilbsc V : = {smooth connected curves C ⊂ V}
closed

∪
open

Hilbsc
d,g V : = {curves of degree degree d and genus g}

(d := degOC(1))
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Hilbert scheme of space curves

V = P3: the projective 3-space over k
C ⊂ P3: a closed subscheme of dim = 1
d(C): degree of C (= ♯(C ∩ P2))
g(C): arithmetic genus of C
We study the Hilbert scheme of space curves:

Hd,g := Hilbsc
d,g P

3

=

{
C ⊂ P3

∣∣∣ smooth and connected
d(C) = d and g(C) = g

}
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Why we study Hd,g?

Some reasons are:
For every smooth curve C, there exists a curve C′ ⊂ P3

s.t. C′ ≃ C.
Hilbsc P3 =

⊔
d,g Hd,g

More recently, the classification of the space curves has
been applied to the study of bir. automorphism

Φ : P3 d P3

(for the construction of Sarkisov links
[Blanc-Lamy,2012]).
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Some basic facts

If g ≤ d − 3, then Hd,g is irreducible [Ein,’86] and Hd,g is
generically smooth of expected dimension 4d.
In general, Hd,g can become reducible, e.g
H9,10 = W(36)

1
⊔W(36)

2
[Noether].

the Hilbert scheme of arith. Cohen-Macaulay (ACM, for
short) curves are smooth [Ellingsrud, ’75].

C ⊂ P3: ACM
def
⇐⇒ H1(P3, IC(l)) = 0 for all l ∈ Z

Hd,g can have many generically non-reduced irreducible
components, e.g. [Mumford’62], [Kleppe’87], [Ellia’87],
[Gruson-Peskine’82], etc.
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Infinitesimal property of the Hilbert scheme

V: a smooth projective variety over k
X ⊂ V: a closed subscheme of V
IX: the ideal sheaf defining X in V
NX/V: the normal sheaf of X in V
.
Fact (Tangent space and Obstruction group)
..

......

...1 The tangent space of Hilb V at [X] is isomorphic to
Hom(IX,OX) ≃ H0(X, NX/V)

...2 Every obstruction ob to deforming X in V is contained in
the group Ext1(IX,OX). If X is a locally complete
intersection in V, then ob is contained in H1(X, NX/V)
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If X is a loc. comp. int. in V, then we have the following
inequalities:
.
Fact..

......

...1 We have

h0(X, NX/V)−h1(X, NX/V) ≤ dim[X] Hilb V ≤ h0(X, NX/V).

...2 In particular, if H1(X, NX/V) = 0, then Hilb V is
nonsingular at [X] of dimension h0(X, NX/V).
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What is Obstruction?

(R,m): a local ring with residue field k.
R is a regular loc. ring if grm R :=

⊕∞
l=0m

l/ml+1 is isom. to
a polynomial ring over k.
X: a scheme X of finite type over k.
X is nonsingular at x⇐⇒ Ox,X is a regular loc. ring.
.
Proposition (infinitesimal lifting property of smoothness)
..

......

R is a regular local ring if and only if for any surjective homo.
π : A′ → A of Artinian rings A, A′, a ring homo. u : R → A
lifts to u′ : R → A′.
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X(A) = { f : Spec A → X}: the set of A-valued points of X.

X is nonsingular⇐⇒ the map X(A′) → X(A) is surjective for
any surjection u : A′ → A of Artinian rings.

If X is singular, then the map X(A′) → X(A) is not surjective
in general.

There exists a vector space V over k (called obstruction
group) with the following property:
for any surjection π : A′ → A of Artinian rings and
u : R → A, there exists an element ob(u, A′) ∈ V and

ob(u, A′) = 0 ⇐⇒ u lifts to u′ : R → A′

Here ob(u, A′) is called the obstruction for u.
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First order deformation

X ⊂ V: a closed subscheme of V.
T: a scheme over k
.
Definition..

......
A deformation of X in V over T is a closed subscheme
X′ ⊂ V × T, flat over T, with X0 = X.

A deformation of X over the ring of dual number
D := k[t]/(t2) is called a first order deformation of X in V.
By the univ. prop. of the Hilb. sch., there exists a one-to-one
correspondence between

...1 D-valued pts Spec D → Hilb V sending 0 7→ [X].

...2 first order deformations of X in V
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Applying the infinitesimal lifting prop. of smoothness to the
surjection

k[t]/(t3) → k[t]/(t2) → 0,

we have
.
Proposition
..

......

If Hilb V is nonsingular at [X], then every first order
deformation of X in V lifts to a (second) order deformation of
X in V over k[t]/(t3).
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W ⊂ Hilb V: an irreducible closed subset of Hilb V.
[X] ∈ W: a closed point of W
Xη ∈ W: the generic point of W
.
Definition..

......

We say X is unobstructed (resp. obstructed) (in V) if
Hilb V is nonsingular (resp. singular) at [X].
We say Hilb V is generically smooth (resp. generically
non-reduced) along W if Hilb V is nonsingular (resp.
singular) at Xη.
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Mumford’s example (a pathology)

S ⊂ P3: a smooth cubic surface (≃ Blow6 pts P2)
h = S ∩ P2: a hyperplane section
E: a line on S
There exists a smooth connected curve

C ∈ |4h + 2E| ⊂ S ⊂ P3,

of degree 14 and genus 24.
Then C is parametrized by a locally closed subset

W = W(56) ⊂ H14,24 ⊂ Hilbsc P3

of the Hilbert scheme.
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The locally closed subset W(56) fits into the diagram{
C ⊂ P3

∣∣∣∣C ⊂ ∃S (smooth cubic)
and C ∼ 4h + 2E

}−
=: W(56) ⊂ H14,24yP39-bundle( family of smooth

cubic surfaces

)
=: U ⊂

open
|OP3(3)| ≃ P19,

where we have dim |OS(C)| = 39 and h0(NC/P3) = 57.
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H0(NC/P3) = the tangent space of Hilbsc P3 at [C].
We have the following inequalities:

56 = dim W ≤ dim[C] Hilbsc P3 ≤ h0(NC/P3) = 57.

Thus we have a dichotomy between (A) and (B):
...A W is an irred. comp. of (Hilbsc P3)red.

Hilbsc P3 is generically non-reduced along W.
...B There exists an irred. comp. W′ ⫌ W.

Hilbsc P3 is generically smooth along W.
Which? { The answer is (A). (It suffices to prove Hilbsc P3 is
singular at the generic point [C] of W. We will see later in §2)
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History

Later many non-reduced components of Hilbsc P3 were
found by Kleppe[’85], Ellia[’87], Gruson-Peskine[’82],
Fløystad[’93] and Nasu[’05].
Moreover, to the question ”How bad can the deformation
space of an object be?”, Vakil[’06] has answered that
.
Law (Murphy’s law in algebraic geometry)
..

......
Unless there is some a priori reason otherwise, the
deformation space may be as bad as possible.
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A naive question

Nowadays non-reduced components of Hilbert schemes are
not seldom. However,
.
Question..

......
What is/are the most important reason(s) (if any) for their
existence?

Our answer is the following: (at least in Mumford’s example,)
a (−1)-curve E (i.e. E ≃ P1, E2 = −1) on the (cubic) surface
is the most important.
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A generalization of Mumford’s ex.

.
Theorem (Mukai-Nasu’09)
..

......

V: a smooth projective 3-fold. Suppose that
...1 there exists a curve E ≃ P1 ⊂ V

s.t. NE/V is generated by global sections,
...2 there exists a smooth surface S s.t. E ⊂ S ⊂ V,

(E2)S = −1 and H1(NS/V) = pg(S) = 0.
Then the Hilbert scheme Hilbsc V has infinitely many
generically non-reduced components.

In Mumford’s ex., V = P3, S: a smooth cubic, E: a line.
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Examples

We have many ex. of generically non-reduced components
of Hilbsc V for uniruled 3-folds V.
.
Ex...

......

...1 Let V be a Fano 3-fold and let −KV = H + H′, where
H, H′: ample. ∃S ∈ |H| (smooth).
If S ; P2 nor P1 × P1, then there exists a (−1)-P1 E on S.

...2 Let V
π→ F be a P1-bundle over a smooth surface F with

pg(F) = 0. Let S1 be a section of π and A a sufficiently
ample divisor on F. Then there exists a smooth surface
S ∈ |S1 + π

∗A|. Take a fiber E of S → F.
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In the analysis of Mumford’s ex., we develop some
techniques to computing the obstruction to deforming a
curve on a uniruled 3-fold (“obstructedness criterion”).

Setting:
V: a uniruled 3-fold
S: a surface
E: (−1)-curve on S
C: a curve on S
with C, E ⊂ S ⊂ V

Obst. Criterion
=⇒

Non-reduced
components
of Hilbsc V
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Obstructions and Cup products

C̃ ⊂ V × Spec k[t]/(t2):
a first order (infinitesimal) deformation of C in V
(i.e.,a tangent vector of Hilb V at [C])

C̃ ∈ {1st ord. def. of C}
↕ ↕ ∃1-to-1
α ∈ Hom(IC,OC) (≃ H0(NC/V))

Define the cup product ob(α) by

ob(α) := α ∪ e ∪ α ∈ Ext1(IC,OC),

where e ∈ Ext1(OC, IC) is the ext. class of an exact
sequence 0 → IC → OV → OC → 0.
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.
Fact..

......
A first order deformation C̃ lifts to a deformation over
Spec k[t]/(t3) if and only if ob(α) = 0.

.
Remark..

......

If ob(α) , 0, then Hilb V is singular at [C].
If C is a loc. complete intersection in V, then ob(α) is
contained in the small group H1(C, NC/V)
(⊂ Ext1(IC,OC)).
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Exterior components

Let C ⊂ S ⊂ V be a flag of a curve, a surface and a 3-fold (all
smooth), and let πC/S : NC/V → NS/V

∣∣∣
C be the natural

projection.
.
Definition..

......

Define the exterior component of α and ob(α) by

πS(α) := H0(πC/S)(α)
obS(α) := H1(πC/S)(ob(α)),

respectively.
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Infinitesimal deformation with pole

Let E ⊂ S ⊂ V be a flag of a curve, a surface and a 3-fold.
.
Definition..

......

A rational section v of NS/V admitting a pole along E, i.e.

v ∈ H0(NS/V(E)) \ H0(NS/V),

is called an infinitesimal deformation with a pole.

.
Remark (an interpretation)
..

......

Every inf. def. with a pole induces a 1st ord. def. of the open
surface S◦ = S \ E in V◦ = V \ E by the map

H0(NS/V(E)) ↪→ H0(NS◦/V◦)
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Obstructedness Criterion

Now we are ready to give a sufficient condition for a first
order infinitesimal deformation of C̃ (⊂ V × Spec k[t]/(t2)) of
C in V to be obstructed. i.e, C̃ does not lift to any second
order deformation ˜̃C (⊂ V × Spec k[t]/(t3)).
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Condition (☆)

We consider α ∈ H0(NC/V) satisfying the following condition
(☆): the ext. comp. πS(α) of α lifts to an inf. def. with a pole
along E, say v, and its restriction v

∣∣∣
E to E does not belong to

the image of the map πE/S(E) := πE/S ⊗ OS(E).

H0(NC/V) ∋ α H0(NE/V(E))yπC/S
y yπE/S(E)

H0(NS/V
∣∣∣C) ∋ πS(α)

(=v
∣∣∣
C

)

res.←− [ v
res.7−→ v

∣∣∣E ∈ H0(NS/V(E)
∣∣∣E)

∩ ∋

H0(NS/V(E)
∣∣∣C)

res.←− H0(NS/V(E))
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.
Theorem (Mukai-Nasu’09)
..

......

Let C, E ⊂ S ⊂ V be as above. Suppose that E2 < 0 on S,
and let α ∈ H0(NC/V) satisfy (☆). If moreover,

...1 Let ∆ := C + KV
∣∣∣
S − 2E on S. Then

(∆ · E)S = 2(−E2 + g(E) − 1) (2.1)

...2 the res. map H0(S, ∆) → H0(E, ∆
∣∣∣
E) is surjective,

then we have obS(α) , 0.

.
Remark..
......If E is a (−1)-P1 on S, then the RHS of (2.1) is equal to 0.
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How to apply Obstructedness Criterion

(Mumford’s ex. V = P3)
Every general member C ⊂ P3 of Mumford’s ex.
W(56) ⊂ Hilbsc P3 is contained in a smooth cubic surface S
and C ∼ 4h + 2E on S (E: a line, h: a hyp. sect.).
Let tW denote the tangent space of W at [C]
(dim tW = dim W = 56).
Then there exists a first order deformation

C̃ ←→ α ∈ H0(C, NC/P3) \ tW .

of C in P3.
.
Claim..
......ob(α) , 0.
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.
Proof...

......

Since H1(NS/P3(E − C)) = 0, the ext. comp.
πC/S(α) ∈ H0(NS/P3

∣∣∣
C) of α has a lifts to a rational section

v ∈ H0(NS/P3(E)) on S (an inf. def. with a pole). By the key
lemma below, the restriction v

∣∣∣
E to E is not contained

im πE/S(E). Since C ∼ 4h + 2E = −KP3

∣∣∣
S + 2E, the divisor ∆

is zero. Thus the condition (1) and (2) are both satisfied. □

.
Lemma (Key Lemma)
..

......
Since C is general, the finite scheme Z := C ∩ E of length 2
is not cut out by any conic in |h − E| ≃ P1 on S.
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Expectation

Let
C ⊂ S ⊂ V

be a flag of a curve, a surface, a 3-fold.

We study the deformation of C in V with a help of the
intermediate surface S and rational curves E ≃ P1 on S.
.
Expectation
..

......

Negative curves E (E2 < 0) on S control the
deformations of C in V.
The obstructedness of C follows from the geometry of S
and E,C.
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We study the deformation of space curves

C ⊂ P3

under the assumption
.
Assumption
..
......C is contained in a smooth quartic surface S ⊂ P3.

Here S is a K3 surface.
ρ := ρ(S): the Picard number of S.
h = OS(1) ∈ Pic S: the cls. of hyp. section of S.
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Another assumption

If S is general, then ρ = 1. Then C ∼ nh for some n ∈ N, i.e.,
C is a comp. int. on S, and hence unobstructed (ACM).

Assume that
.
Assumption
..
......There exists a rational curve E ≃ P1 on S.

For an irred. curve E ⊂ S, we have

E ≃ P1 ⇐⇒ E2 = −2. ((−2)-curve)
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Mori’s result

.
Theorem (Mori’84)
..

......

If there exists a smooth curve E0 / nh, on a smooth quartic
surface S0, then there exists a smooth curve E on a (general)
smooth quartic surface S of the same degree and genus as
E0 satisfying

Pic(S) = Zh ⊕ ZE.
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By Mori’s result, we may assume that ρ(S) = 2 and

Pic(S) = Zh ⊕ ZE

for studying the deformation of C ⊂ S in P3.

Let e (= h · E) be the degree of E. Then the intersection
matrix on S is given by(

h2 h · E
h · E E2

)
=

(
4 e
e −2

)
.
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Mori cone of smooth K3 surface (ρ = 2)

X: a smooth K3 surface.
NE(X) :=

{∑
ai[Ci]

∣∣∣ Ci: irred. curve on X, ai ≥ 0
}

NE(X) = Eff(X) ⊂ Pic(X) ⊗Z R (Mori cone of X)
ρ = 2 =⇒ NE(X) = R≥0x1 + R≥0x2.
.
Fact (A special case of Kovacs’94)
..

......

If ρ = 2, then NE(X) is spanned by either:
...1 (−2)-curve and elliptic curve,
...2 two (−2)-curves,
...3 two elliptic curves, or
...4 two non-effective divisors x1, x2 with x2

i
= 0.

Hirokazu Nasu Introduction to Hilbert schemes of curves on a 3-fold



§1 Introduction
§2 Infinitesimal analysis of the Hilbert scheme

§3 Obstruction to deforming curves on a quartic surface
§3.1 Quartic surfaces containing a rational curve

.
Ex...

......

...1 E is a line on S, F := h − E. F2 = 0 (elliptic). Then the
ext. rays are spanned by E and F.

...2 E1 is a conic on S, E2 := h − E1. E2
2
= −2 (conic). Then

the ext. rays are spanned by E1, E2.
...3 F1 is a complete intersection (2) ∩ (2) ⊂ P3.

F2 := 2h − F1. F2
1
= F2

2
= 0 (two elliptics). Then the

ext. rays are spanned by F1, F2.
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Mori cone of smooth quartic surface (ρ = 2)

.
Lemma..

......

Assume ∃E ≃ P1 on a smooth quartic surface S and
Pic S = Zh ⊕ ZE. Let e be the degree of E.

...1 If e = 1, then NE(S) is spanned by E and elliptic curve
F = h − E.

...2 if e ≥ 2, then NE(S) is spanned by E and E′, where
E′ ≃ P1.

.
Proof...

......
Solve the Pell’s equation
2x2 + exy − y2 = −1 (⇐⇒ (xh + yE)2 = −2) □
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the classes of the other (−2)-curves

The classes of the other (−2)-curve E′ is explicitly obtained
as follows:

e = d(E) the class of (−2)-curve E′
2 h − E
3 16h − 9E
4 2h − E
5 8h − 3E
6 3h − E
7 40h − 11E
8 4h − E
9 106000h − 23001E
...

...
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.
Theorem..

......

Let S ⊂ P3 be a smooth quartic surface containing a line E.
Suppose that Pic S = Zh ⊕ ZE.
Let C ⊂ S be a curve, let F := h − E, and suppose that
D := C − 4h ≥ 0.
Then

...1 If D · E ≥ −1 and D , nF for any n ≥ 2, or D = E, then
C is unobstructed.

...2 If D · E = −2 and D , E, then C is obstructed.
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.
Theorem..

......

Let S ⊂ P3 be a smooth quartic surface containing a rational
curve E ≃ P1 of degree e ≥ 2. Suppose that

Pic S = Zh ⊕ ZE.

Let E′ be another (−2)-curve on S, and let C ⊂ S be a curve,
and suppose that D := C − 4h ≥ 0.

...1 If D is nef, D = E or D = E′, then C is unobstructed.

...2 If D · E = −2 and D , E, then C is obstructed.
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Thank you for your attention!
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