§1.1 Definition of the Hilbert scheme

§1.2 Infinitesimal property of the Hilbert scheme

1.3 Mumford's example

Introduction to Hilbert schemes of curves on a 3-fold

Hirokazu Nasu

Tokai University

Autust 30, 2013, Workshop in Algebraic Geometry in Sapporo

§1.1 Definition of the Hilbert scheme

1.2 Infinitesimal property of the Hilbert scheme

1.3 Mumford's example

§1 Introduction

Hirokazu Nasu Introduction to Hilbert schemes of curves on a 3-fold

\$1.1 Definition of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme
 \$1.3 Mumford's example

Hilbert scheme

We work over a field k = k with char k = 0.

 $V \subset \mathbb{P}^n$: a closed subscheme. $O_V(1)$: a very ample line bundle on *V*. $X \subset V$: a closed subscheme. $P = P(X) = \chi(X, O_X(n))$: the Hilbert polynomial of *X*.

Then there exists a proj. scheme H, called the Hilbert scheme of V, parametrizing all closed subschemes X' of V with the same Hilbert poly. P as X.

\$1.1 Definition of the Hilbert scheme \$1.2 Infinitesimal property of the Hilbert scheme \$1.3 Mumford's example

Theorem (Grothendieck'60)

There exists a proj. scheme H and a closed subscheme $W \subset V \times H$ (universal subscheme), flat over H, such that

- the fibers $W_h \subset W$ over a closed point $h \in H$ are closed subschemes of V with the same Hilb. poly. $P(W_h) = P$,
- ② For any scheme *T* and a closed subscheme *W'* ⊂ *V* × *T* with the above prop. ①, there exists a unique morphism $\varphi: T \to H$ such that *W'* = *W* ×_H *T* as a subscheme of *V* × *T* (the universal property of *H*).

§1.1 Definition of the Hilbert scheme

1.2 Infinitesimal property of the Hilbert schem

§1.3 Mumford's example

Notation

Hilb V= the (full) Hilbert scheme of V \bigcup openHilb sc V:= {smooth connected curves $C \subset V$ }closed \bigcup openHilb sc V:= {curves of degree degree d and genus g} $(d := \deg O_C(1))$

§1.1 Definition of the Hilbert scheme §1.2 Infinitesimal property of the Hilbert scheme \$1.3 Mumford's example

Hilbert scheme of space curves

 $V = \mathbb{P}^3$: the projective 3-space over k $C \subset \mathbb{P}^3$: a closed subscheme of dim = 1 d(C): degree of $C (= \sharp(C \cap \mathbb{P}^2))$ g(C): arithmetic genus of C

We study the Hilbert scheme of space curves:

$$H_{d,g} := \operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^{3}$$
$$= \left\{ C \subset \mathbb{P}^{3} \mid \operatorname{smooth} \text{ and } \operatorname{connected} \right\}$$
$$d(C) = d \text{ and } g(C) = g \right\}$$

\$1.1 Definition of the Hilbert scheme \$1.2 Infinitesimal property of the Hilbert scheme \$1.3 Mumford's example

Why we study $H_{d,g}$?

Some reasons are:

- For every smooth curve C, there exists a curve C' ⊂ P³
 s.t. C' ≃ C.
- Hilb^{sc} $\mathbb{P}^3 = \bigsqcup_{d,g} H_{d,g}$
- More recently, the classification of the space curves has been applied to the study of bir. automorphism

$$\Phi:\mathbb{P}^3 \dashrightarrow \mathbb{P}^3$$

(for the construction of Sarkisov links [Blanc-Lamy,2012]).

\$1.1 Definition of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme
 \$1.3 Mumford's example

Some basic facts

- If $g \le d 3$, then $H_{d,g}$ is irreducible [Ein,'86] and $H_{d,g}$ is generically smooth of expected dimension 4d.
- In general, $H_{d,g}$ can become reducible, e.g $H_{9,10} = W_1^{(36)} \sqcup W_2^{(36)}$ [Noether].
- the Hilbert scheme of arith. Cohen-Macaulay (ACM, for short) curves are smooth [Ellingsrud, '75].

 $C \subset \mathbb{P}^3$: ACM $\stackrel{\text{def}}{\Longleftrightarrow} H^1(\mathbb{P}^3, I_C(l)) = 0$ for all $l \in \mathbb{Z}$

H_{d,g} can have many generically non-reduced irreducible components, e.g. [Mumford'62], [Kleppe'87], [Ellia'87], [Gruson-Peskine'82], etc.

\$1.1 Definition of the Hilbert scheme \$1.2 Infinitesimal property of the Hilbert scheme \$1.3 Mumford's example

Infinitesimal property of the Hilbert scheme

V: a smooth projective variety over *k* $X \subset V$: a closed subscheme of *V* I_X : the ideal sheaf defining *X* in *V* $N_{X/V}$: the normal sheaf of *X* in *V*

Fact (Tangent space and Obstruction group)

- The tangent space of Hilb V at [X] is isomorphic to $\operatorname{Hom}(\mathcal{I}_X, \mathcal{O}_X) \simeq H^0(X, N_{X/V})$
- Solution Struction Structure is to deforming *X* in *V* is contained in the group $\text{Ext}^1(\mathcal{I}_X, \mathcal{O}_X)$. If *X* is a locally complete intersection in *V*, then ob is contained in $H^1(X, N_{X/V})$

\$1.1 Definition of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme
 \$1.3 Mumford's example

If X is a loc. comp. int. in V, then we have the following inequalities:

\$1.1 Definition of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme
 \$1.3 Mumford's example

What is Obstruction?

 (R, \mathfrak{m}) : a local ring with residue field k. R is a regular loc. ring if $\operatorname{gr}_{\mathfrak{m}} R := \bigoplus_{l=0}^{\infty} \mathfrak{m}^{l}/\mathfrak{m}^{l+1}$ is isom. to a polynomial ring over k. X: a scheme X of finite type over k. X is nonsingular at $x \iff O_{x,X}$ is a regular loc. ring.

Proposition (infinitesimal lifting property of smoothness)

R is a regular local ring if and only if for any surjective homo. $\pi: A' \to A$ of Artinian rings A, A', a ring homo. $u: R \to A$ lifts to $u': R \to A'$.

 \$1 Introduction
 \$1.1 Definition of the Hilbert scheme

 \$2 Infinitesimal analysis of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme

 \$3 Obstruction to deforming curves on a quartic surface
 \$1.3 Mumford's example

 $X(A) = \{f : \text{Spec } A \rightarrow X\}$: the set of *A*-valued points of *X*.

X is nonsingular \iff the map $X(A') \rightarrow X(A)$ is surjective for any surjection $u : A' \rightarrow A$ of Artinian rings.

If X is singular, then the map $X(A') \rightarrow X(A)$ is not surjective in general.

There exists a vector space *V* over *k* (called obstruction group) with the following property: for any surjection $\pi : A' \to A$ of Artinian rings and $u : R \to A$, there exists an element $ob(u, A') \in V$ and

$$ob(u, A') = 0 \iff u$$
 lifts to $u' : R \rightarrow A'$

Here ob(u, A') is called the obstruction for u.

\$1.1 Definition of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme
 \$1.3 Mumford's example

First order deformation

- $X \subset V$: a closed subscheme of V.
- T: a scheme over k

Definition

A deformation of *X* in *V* over *T* is a closed subscheme $X' \subset V \times T$, flat over *T*, with $X_0 = X$.

A deformation of X over the ring of dual number $D := k[t]/(t^2)$ is called a first order deformation of X in V. By the univ. prop. of the Hilb. sch., there exists a one-to-one correspondence between

- *D*-valued pts Spec $D \rightarrow$ Hilb *V* sending $0 \mapsto [X]$.
- Ifirst order deformations of X in V

 \$1 Introduction
 \$1.1 Definition of the Hilbert scheme

 \$2 Infinitesimal analysis of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme

 \$3 Obstruction to deforming curves on a quartic surface
 \$1.3 Mumford's example

Applying the infinitesimal lifting prop. of smoothness to the surjection

$$k[t]/(t^3) \rightarrow k[t]/(t^2) \rightarrow 0,$$

we have

Proposition

If **Hilb** *V* is nonsingular at [*X*], then every first order deformation of *X* in *V* lifts to a (second) order deformation of *X* in *V* over $k[t]/(t^3)$.

 \$1 Introduction
 \$1.1 Definition of the Hilbert scheme

 \$2 Infinitesimal analysis of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme

 \$3 Obstruction to deforming curves on a quartic surface
 \$1.3 Mumford's example

 $W \subset$ Hilb *V*: an irreducible closed subset of Hilb *V*. [*X*] \in *W*: a closed point of *W* $X_{\eta} \in$ *W*: the generic point of *W*

Definition

- We say *X* is unobstructed (resp. obstructed) (in *V*) if Hilb *V* is nonsingular (resp. singular) at [*X*].
- We say Hilb V is generically smooth (resp. generically non-reduced) along W if Hilb V is nonsingular (resp. singular) at X_η.

§1.1 Definition of the Hilbert scheme

§1.2 Infinitesimal property of the Hilbert scheme

§1.3 Mumford's example

Mumford's example (a pathology)

 $S \subset \mathbb{P}^3$: a smooth cubic surface ($\simeq \operatorname{Blow}_{6 \text{ pts}} \mathbb{P}^2$) $h = S \cap \mathbb{P}^2$: a hyperplane section *E*: a line on *S* There exists a smooth connected curve

 $C \in |4h + 2E| \subset S \subset \mathbb{P}^3,$

of degree 14 and genus 24.

Then C is parametrized by a locally closed subset

$$W = W^{(56)} \subset H_{14,24} \subset \operatorname{Hilb}^{sc} \mathbb{P}^3$$

of the Hilbert scheme.

 \$1 Introduction
 \$1.1 Definition of the Hilbert scheme

 \$2 Infinitesimal analysis of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme

 \$3 Obstruction to deforming curves on a quartic surface
 \$1.3 Mumford's example

The locally closed subset $W^{(56)}$ fits into the diagram

where we have dim $|O_S(C)| = 39$ and $h^0(N_{C/\mathbb{P}^3}) = 57$.

 \$1 Introduction
 \$1.1 Definition of the Hilbert scheme

 \$2 Infinitesimal analysis of the Hilbert scheme
 \$1.2 Infinitesimal property of the Hilbert scheme

 \$3 Obstruction to deforming curves on a quartic surface
 \$1.3 Mumford's example

 $H^0(N_{C/\mathbb{P}^3})$ = the tangent space of Hilb^{sc} \mathbb{P}^3 at [C]. We have the following inequalities:

56 = dim $W \leq \dim_{[C]} \operatorname{Hilb}^{sc} \mathbb{P}^3 \leq h^0(N_{C/\mathbb{P}^3}) = 57.$

Thus we have a dichotomy between (A) and (B):

- W is an irred. comp. of $(\operatorname{Hilb}^{sc} \mathbb{P}^3)_{red}$. Hilb^{sc} \mathbb{P}^3 is generically non-reduced along \overline{W} .
- [●] There exists an irred. comp. $W' \supseteq W$. Hilb^{sc} \mathbb{P}^3 is generically smooth along \overline{W} .

Which? \rightsquigarrow The answer is (A). (It suffices to prove **Hilb**^{*sc*} \mathbb{P}^3 is singular at the generic point [*C*] of *W*. We will see later in §2)

§1.1 Definition of the Hilbert scheme

§1.2 Infinitesimal property of the Hilbert scheme

§1.3 Mumford's example

History

Later many non-reduced components of Hilb^{sc} \mathbb{P}^3 were found by Kleppe['85], Ellia['87], Gruson-Peskine['82], Fløystad['93] and Nasu['05]. Moreover, to the question "How bad can the deformation space of an object be?", Vakil['06] has answered that

Law (Murphy's law in algebraic geometry)

Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.

§1.1 Definition of the Hilbert scheme

\$1.2 Infinitesimal property of the Hilbert scheme

§1.3 Mumford's example

A naive question

Nowadays non-reduced components of Hilbert schemes are not seldom. However,

Question

What is/are the most important reason(s) (if any) for their existence?

Our answer is the following: (at least in Mumford's example,) a (-1)-curve *E* (i.e. $E \simeq \mathbb{P}^1$, $E^2 = -1$) on the (cubic) surface is the most important.

§1 Introduction

§2 Infinitesimal analysis of the Hilbert scheme §3 Obstruction to deforming curves on a quartic surface §1.1 Definition of the Hilbert scheme

\$1.2 Infinitesimal property of the Hilbert scheme

§1.3 Mumford's example

A generalization of Mumford's ex.

Theorem (Mukai-Nasu'09)

V: a smooth projective 3-fold. Suppose that

- there exists a curve $E \simeq \mathbb{P}^1 \subset V$
 - s.t. $N_{E/V}$ is generated by global sections,
- there exists a smooth surface S s.t. $E \subset S \subset V$,

$$(E^2)_S = -1$$
 and $H^1(N_{S/V}) = p_g(S) = 0$.

Then the Hilbert scheme $Hilb^{sc} V$ has infinitely many generically non-reduced components.

In Mumford's ex., $V = \mathbb{P}^3$, S: a smooth cubic, E: a line.

Examples

We have many ex. of generically non-reduced components of $\operatorname{Hilb}^{sc} V$ for uniruled 3-folds V.

Ex. Let V be a Fano 3-fold and let -K_V = H + H', where H, H': ample. [∃]S ∈ |H| (smooth). If S ≄ ℙ² nor ℙ¹ × ℙ¹, then there exists a (-1)-ℙ¹ E on S. Let V → F be a ℙ¹-bundle over a smooth surface F with p_g(F) = 0. Let S₁ be a section of π and A a sufficiently ample divisor on F. Then there exists a smooth surface S ∈ |S₁ + π^{*}A|. Take a fiber E of S → F.

§2 Infinitesimal analysis of the Hilbert scheme

In the analysis of Mumford's ex., we develop some techniques to computing the obstruction to deforming a curve on a uniruled **3**-fold ("obstructedness criterion").

Setting:

V: a uniruled 3-fold *S*: a surface *E*: (-1)-curve on *S C*: a curve on *S* with $C, E \subset S \subset V$

Obst. Criterion

Non-reduced components of Hilb^{sc} V

Obstructions and Cup products

 $\tilde{C} \subset V \times \operatorname{Spec} k[t]/(t^2)$:

a first order (infinitesimal) deformation of *C* in *V* (i.e., a tangent vector of **Hilb** *V* at [*C*])

$$\tilde{C} \in \{ \text{1st ord. def. of } C \}$$

$$\uparrow \quad \uparrow^{\exists}_{1-\text{to-1}}$$

$$\alpha \in \operatorname{Hom}(I_C, O_C) \quad (\simeq H^0(N_{C/V}))$$

Define the cup product $ob(\alpha)$ by

$$ob(\alpha) := \alpha \cup e \cup \alpha \in Ext^1(\mathcal{I}_C, \mathcal{O}_C),$$

where $\mathbf{e} \in \operatorname{Ext}^{1}(O_{C}, \mathcal{I}_{C})$ is the ext. class of an exact sequence $\mathbf{0} \to \mathcal{I}_{C} \to O_{V} \to O_{C} \to \mathbf{0}$.

Fact

A first order deformation \tilde{C} lifts to a deformation over Spec $k[t]/(t^3)$ if and only if $ob(\alpha) = 0$.

Remark

- If $ob(\alpha) \neq 0$, then Hilb V is singular at [C].
- If C is a loc. complete intersection in V, then ob(α) is contained in the small group H¹(C, N_{C/V}) (⊂ Ext¹(I_C, O_C)).

Exterior components

Let $C \subset S \subset V$ be a flag of a curve, a surface and a 3-fold (all smooth), and let $\pi_{C/S} : N_{C/V} \to N_{S/V}|_C$ be the natural projection.

Definition

Define the *exterior component* of α and $ob(\alpha)$ by

$$\begin{aligned} \pi_S(\alpha) &:= H^0(\pi_{C/S})(\alpha) \\ \mathrm{ob}_S(\alpha) &:= H^1(\pi_{C/S})(\mathrm{ob}(\alpha)), \end{aligned}$$

respectively.

Infinitesimal deformation with pole

Let $E \subset S \subset V$ be a flag of a curve, a surface and a 3-fold.

Definition

A rational section v of $N_{S/V}$ admitting a pole along E, i.e.

$$v \in H^0(N_{S/V}(E)) \setminus H^0(N_{S/V}),$$

is called an infinitesimal deformation with a pole.

Remark (an interpretation)

Every inf. def. with a pole induces a 1st ord. def. of the open surface $S^{\circ} = S \setminus E$ in $V^{\circ} = V \setminus E$ by the map

$$H^0(N_{S/V}(E)) \hookrightarrow H^0(N_{S^\circ/V^\circ})$$

Obstructedness Criterion

Now we are ready to give a sufficient condition for a first order infinitesimal deformation of $\tilde{C} (\subset V \times \operatorname{Spec} k[t]/(t^2))$ of C in V to be obstructed. i.e, \tilde{C} does not lift to any second order deformation $\tilde{\tilde{C}} (\subset V \times \operatorname{Spec} k[t]/(t^3))$.

Condition (

We consider $\alpha \in H^0(N_{C/V})$ satisfying the following condition (): the ext. comp. $\pi_S(\alpha)$ of α lifts to an inf. def. with a pole along *E*, say *v*, and its restriction $v|_E$ to *E* does not belong to the image of the map $\pi_{E/S}(E) := \pi_{E/S} \otimes O_S(E)$.

Theorem (Mukai-Nasu'09)

Let $C, E \subset S \subset V$ be as above. Suppose that $E^2 < 0$ on S, and let $\alpha \in H^0(N_{C/V})$ satisfy (). If moreover,

) Let
$$\Delta := C + K_V |_S - 2E$$
 on S. Then

$$(\Delta \cdot E)_S = 2(-E^2 + g(E) - 1)$$
 (2.1)

② the res. map $H^0(S, \Delta) \to H^0(E, \Delta|_E)$ is surjective, then we have $\mathbf{ob}_S(\alpha) \neq \mathbf{0}$.

Remark

If E is a (-1)- \mathbb{P}^1 on S, then the RHS of (2.1) is equal to 0.

How to apply Obstructedness Criterion

(Mumford's ex. $V = \mathbb{P}^3$) Every general member $C \subset \mathbb{P}^3$ of Mumford's ex. $W^{(56)} \subset \text{Hilb}^{sc} \mathbb{P}^3$ is contained in a smooth cubic surface Sand $C \sim 4h + 2E$ on S (E: a line, h: a hyp. sect.). Let t_W denote the tangent space of W at [C] (dim $t_W = \text{dim } W = 56$). Then there exists a first order deformation

Then there exists a first order deformation

$$\tilde{C} \longleftrightarrow \alpha \in H^0(C, N_{C/\mathbb{P}^3}) \setminus t_W.$$

of C in \mathbb{P}^3 .

Claim	
$ob(\alpha) \neq 0.$	

Proof.

Since $H^1(N_{S/\mathbb{P}^3}(E-C)) = 0$, the ext. comp. $\pi_{C/S}(\alpha) \in H^0(N_{S/\mathbb{P}^3}|_C)$ of α has a lifts to a rational section $v \in H^0(N_{S/\mathbb{P}^3}(E))$ on S (an inf. def. with a pole). By the key lemma below, the restriction $v|_E$ to E is not contained im $\pi_{E/S}(E)$. Since $C \sim 4h + 2E = -K_{\mathbb{P}^3}|_S + 2E$, the divisor Δ is zero. Thus the condition (1) and (2) are both satisfied. \Box

Lemma (Key Lemma)

Since *C* is general, the finite scheme $Z := C \cap E$ of length 2 is not cut out by any conic in $|h - E| \simeq \mathbb{P}^1$ on *S*.

§3 Obstruction to deforming curves on a quartic surface

Expectation

Let

$C \subset S \subset V$

be a flag of a curve, a surface, a 3-fold.

We study the deformation of *C* in *V* with a help of the intermediate surface *S* and rational curves $E \simeq \mathbb{P}^1$ on *S*.

Expectation

- Negative curves E (E² < 0) on S control the deformations of C in V.
- The obstructedness of *C* follows from the geometry of *S* and *E*, *C*.

We study the deformation of space curves

 $C \subset \mathbb{P}^3$

under the assumption

Assumption

C is contained in a smooth quartic surface $S \subset \mathbb{P}^3$.

Here S is a K3 surface.

 $\rho := \rho(S)$: the Picard number of *S*.

 $\mathbf{h} = O_S(1) \in \operatorname{Pic} S$: the cls. of hyp. section of S.

§3.1 Quartic surfaces containing a rational curve

Another assumption

If *S* is general, then $\rho = 1$. Then $C \sim n\mathbf{h}$ for some $n \in \mathbb{N}$, i.e., *C* is a comp. int. on *S*, and hence unobstructed (ACM).

Assume that

Assumption

There exists a rational curve $E \simeq \mathbb{P}^1$ on *S*.

For an irred. curve $E \subset S$, we have

$$E \simeq \mathbb{P}^1 \iff E^2 = -2.$$
 ((-2)-curve)

Mori's result

Theorem (Mori'84)

If there exists a smooth curve $E_0 \not\sim n\mathbf{h}$, on a smooth quartic surface S_0 , then there exists a smooth curve E on a (general) smooth quartic surface S of the same degree and genus as E_0 satisfying

 $\operatorname{Pic}(S) = \mathbb{Z}h \oplus \mathbb{Z}E.$

By Mori's result, we may assume that $\rho(S) = 2$ and

 $\operatorname{Pic}(S) = \mathbb{Z}\mathbf{h} \oplus \mathbb{Z}E$

for studying the deformation of $C \subset S$ in \mathbb{P}^3 .

Let $e (= \mathbf{h} \cdot E)$ be the degree of E. Then the intersection matrix on S is given by

$$\begin{pmatrix} \mathbf{h}^2 & \mathbf{h} \cdot E \\ \mathbf{h} \cdot E & E^2 \end{pmatrix} = \begin{pmatrix} 4 & e \\ e & -2 \end{pmatrix}.$$

Mori cone of smooth K3 surface ($\rho = 2$)

$$X: a \text{ smooth K3 surface.}$$

$$NE(X) := \left\{ \sum a_i[C_i] \mid C_i: \text{ irred. curve on } X, a_i \ge 0 \right\}$$

$$\overline{NE(X)} = \overline{Eff(X)} \subset \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{R} \quad (\text{Mori cone of } X)$$

$$\rho = 2 \Longrightarrow \overline{NE(X)} = \mathbb{R}_{\ge 0} x_1 + \mathbb{R}_{\ge 0} x_2.$$

Fact (A special case of Kovacs'94)

- If $\rho = 2$, then **NE**(*X*) is spanned by either:
 - (−2)-curve and elliptic curve,
 - ② two (−2)-curves,
 - two elliptic curves, or

• two non-effective divisors x_1, x_2 with $x_i^2 = 0$.

Ex.

- *E* is a line on *S*, F := h E. $F^2 = 0$ (elliptic). Then the ext. rays are spanned by *E* and *F*.
- 2 E_1 is a conic on S, $E_2 := h E_1$. $E_2^2 = -2$ (conic). Then the ext. rays are spanned by E_1, E_2 .
- ◎ F_1 is a complete intersection (2) \cap (2) $\subset \mathbb{P}^3$. $F_2 := 2\mathbf{h} - F_1$. $F_1^2 = F_2^2 = 0$ (two elliptics). Then the ext. rays are spanned by F_1, F_2 .

Mori cone of smooth quartic surface ($\rho = 2$)

Lemma

Assume ${}^{\exists}E \simeq \mathbb{P}^1$ on a smooth quartic surface *S* and **Pic** $S = \mathbb{Z}\mathbf{h} \oplus \mathbb{Z}E$. Let *e* be the degree of *E*.

- If e = 1, then NE(S) is spanned by E and elliptic curve F = h E.
- ② if e ≥ 2, then NE(S) is spanned by *E* and *E'*, where $E' ≃ \mathbb{P}^1$.

Proof.

Solve the Pell's equation $2x^2 + exy - y^2 = -1$ (\iff $(xh + yE)^2 = -2$)

the classes of the other (-2)-curves

The classes of the other (-2)-curve E' is explicitly obtained as follows:

e = d(E)	the class of (-2) -curve E'
2	h - E
3	16h - 9E
4	2h-E
5	8h-3E
6	3h-E
7	40h - 11E
8	4h-E
9	106000h - 23001E
:	•

Theorem

Let $S \subset \mathbb{P}^3$ be a smooth quartic surface containing a line *E*. Suppose that $\operatorname{Pic} S = \mathbb{Z} h \oplus \mathbb{Z} E$. Let $C \subset S$ be a curve, let F := h - E, and suppose that $D := C - 4h \ge 0$.

Then

- If $D \cdot E \ge -1$ and $D \ne nF$ for any $n \ge 2$, or D = E, then *C* is unobstructed.
- ② If $D \cdot E = -2$ and $D \neq E$, then C is obstructed.

Theorem

Let $S \subset \mathbb{P}^3$ be a smooth quartic surface containing a rational curve $E \simeq \mathbb{P}^1$ of degree $e \ge 2$. Suppose that

Pic $S = \mathbb{Z}h \oplus \mathbb{Z}E$.

Let *E'* be another (-2)-curve on *S*, and let $C \subset S$ be a curve, and suppose that $D := C - 4h \ge 0$.

• If *D* is nef, D = E or D = E', then *C* is unobstructed.

② If $D \cdot E = -2$ and $D \neq E$, then C is obstructed.

Thank you for your attention!

Reference

S. Mukai and H. Nasu.

Obstructions to deforming curves on a 3-fold I: A generalization of Mumford's example and an application to Hom schemes.

J. Algebraic Geom., 18(2009), 691-709

H. Nasu.

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold,

Annales de L'Institut Fourier, 60(2010), no.4, 1289-1316.