Introduction to Hilbert schemes of curves on a 3-fold

Hirokazu Nasu

Tokai University
Autust 30, 2013,
Workshop in Algebraic Geometry in Sapporo

§1 Introduction

Hilbert scheme

We work over a field $\boldsymbol{k}=\overline{\boldsymbol{k}}$ with char $\boldsymbol{k}=\mathbf{0}$.
$V \subset \mathbb{P}^{n}:$ a closed subscheme.
$O_{V}(\mathbf{1})$: a very ample line bundle on V.
$X \subset V$: a closed subscheme.
$\boldsymbol{P}=\boldsymbol{P}(\boldsymbol{X})=\chi\left(\boldsymbol{X}, O_{X}(\boldsymbol{n})\right)$: the Hilbert polynomial of \boldsymbol{X}.
Then there exists a proj. scheme \boldsymbol{H}, called the Hilbert scheme of V, parametrizing all closed subschemes X^{\prime} of \boldsymbol{V} with the same Hilbert poly. \boldsymbol{P} as \boldsymbol{X}.

Theorem (Grothendieck'60)

There exists a proj. scheme H and a closed subscheme $\boldsymbol{W} \subset \boldsymbol{V} \times \boldsymbol{H}$ (universal subscheme), flat over \boldsymbol{H}, such that
(1) the fibers $\boldsymbol{W}_{\boldsymbol{h}} \subset \boldsymbol{W}$ over a closed point $\boldsymbol{h} \in \boldsymbol{H}$ are closed subschemes of \boldsymbol{V} with the same Hilb. poly. $\boldsymbol{P}\left(\boldsymbol{W}_{\boldsymbol{h}}\right)=\boldsymbol{P}$,
(2) For any scheme \boldsymbol{T} and a closed subscheme $W^{\prime} \subset V \times T$ with the above prop. (1), there exists a unique morphism $\varphi: \boldsymbol{T} \rightarrow \boldsymbol{H}$ such that $\boldsymbol{W}^{\prime}=\boldsymbol{W} \times_{\boldsymbol{H}} \boldsymbol{T}$ as a subscheme of $\boldsymbol{V} \times \boldsymbol{T}$ (the universal property of \boldsymbol{H}).

Notation

 Hilb $\boldsymbol{V} \quad=$ the (full) Hilbert scheme of \boldsymbol{V} U openHilb $^{s c} \boldsymbol{V}:=\{$ smooth connected curves $\boldsymbol{C} \subset \boldsymbol{V}\}$
closed \bigcup open
$\operatorname{Hilb}_{d, g}^{s c} V:=\{$ curves of degree degree d and genus g \}
$\left(d:=\operatorname{deg} O_{C}(1)\right)$

Hilbert scheme of space curves

$\boldsymbol{V}=\mathbb{P}^{\mathbf{3}}$: the projective $\mathbf{3}$-space over \boldsymbol{k}
$\boldsymbol{C} \subset \mathbb{P}^{\mathbf{3}}:$ a closed subscheme of $\operatorname{dim}=\mathbf{1}$
$d(\boldsymbol{C})$: degree of $\boldsymbol{C}\left(=\sharp\left(\boldsymbol{C} \cap \mathbb{P}^{2}\right)\right)$
$g(C)$: arithmetic genus of \boldsymbol{C}
We study the Hilbert scheme of space curves:

$$
\begin{aligned}
\boldsymbol{H}_{d, g} & :=\text { Hilb }_{d, g}^{s c} \mathbb{P}^{3} \\
& =\left\{\boldsymbol{C \subset \mathbb { P } ^ { 3 } | \begin{array} { l }
{ \text { smooth and connected } } \\
{ d (C) = d \text { and } g (C) = g }
\end{array} \}}\right.
\end{aligned}
$$

Why we study $\boldsymbol{H}_{d, g}$?

Some reasons are:

- For every smooth curve \boldsymbol{C}, there exists a curve $\boldsymbol{C}^{\prime} \subset \mathbb{P}^{3}$ s.t. $\boldsymbol{C}^{\prime} \simeq \boldsymbol{C}$.
- Hilb ${ }^{s c} \mathbb{P}^{3}=\bigsqcup_{d, g} H_{d, g}$
- More recently, the classification of the space curves has been applied to the study of bir. automorphism

$$
\Phi: \mathbb{P}^{3} \cdots \mathbb{P}^{3}
$$

(for the construction of Sarkisov links
[Blanc-Lamy,2012]).

Some basic facts

- If $\boldsymbol{g} \leq \boldsymbol{d} \boldsymbol{- 3}$, then $\boldsymbol{H}_{\boldsymbol{d}, \boldsymbol{g}}$ is irreducible [Ein,'86] and $\boldsymbol{H}_{\boldsymbol{d}, \boldsymbol{g}}$ is generically smooth of expected dimension $\mathbf{4 d}$.
- In general, $\boldsymbol{H}_{d, g}$ can become reducible, e.g $\boldsymbol{H}_{9,10}=W_{1}^{(36)} \sqcup W_{2}^{(36)}$ [Noether].
- the Hilbert scheme of arith. Cohen-Macaulay (ACM, for short) curves are smooth [Ellingsrud, '75].

$$
\boldsymbol{C} \subset \mathbb{P}^{3}: \text { ACM } \stackrel{\text { def }}{\Longleftrightarrow} \boldsymbol{H}^{1}\left(\mathbb{P}^{3}, I_{C}(l)\right)=\mathbf{0} \text { for all } l \in \mathbb{Z}
$$

- $\boldsymbol{H}_{\boldsymbol{d}, \boldsymbol{g}}$ can have many generically non-reduced irreducible components, e.g. [Mumford'62], [Kleppe'87], [Ellia'87], [Gruson-Peskine'82], etc.

Infinitesimal property of the Hilbert scheme

\boldsymbol{V} : a smooth projective variety over \boldsymbol{k}
$X \subset V$: a closed subscheme of V
I_{X} : the ideal sheaf defining X in V
$N_{X / V}$: the normal sheaf of X in V
Fact (Tangent space and Obstruction group)
(c) The tangent space of Hilb V at $[X]$ is isomorphic to $\operatorname{Hom}\left(\mathcal{I}_{X}, O_{X}\right) \simeq H^{0}\left(X, N_{X / V}\right)$
(2) Every obstruction ob to deforming X in V is contained in the group $\operatorname{Ext}^{1}\left(\boldsymbol{I}_{X}, O_{X}\right)$. If X is a locally complete intersection in \boldsymbol{V}, then ob is contained in $\boldsymbol{H}^{1}\left(\boldsymbol{X}, \boldsymbol{N}_{X / V}\right)$

If \boldsymbol{X} is a loc. comp. int. in \boldsymbol{V}, then we have the following inequalities:

Fact

© We have
$h^{0}\left(X, N_{X / V}\right)-h^{1}\left(X, N_{X / V}\right) \leq \operatorname{dim}_{[X]} \operatorname{Hilb} V \leq h^{0}\left(X, N_{X / V}\right)$.
(2) In particular, if $\boldsymbol{H}^{1}\left(X, N_{X / V}\right)=0$, then Hilb V is nonsingular at [X] of dimension $\boldsymbol{h}^{0}\left(\boldsymbol{X}, \boldsymbol{N}_{X / V}\right)$.

What is Obstruction?

$(\boldsymbol{R}, \mathfrak{m})$: a local ring with residue field \boldsymbol{k}.
\boldsymbol{R} is a regular loc. ring if $\mathbf{g r}_{\mathrm{m}} \boldsymbol{R}:=\bigoplus_{l=0}^{\infty} \mathfrak{m}^{l} / \mathfrak{m}^{l+1}$ is isom. to a polynomial ring over \boldsymbol{k}.
\boldsymbol{X} : a scheme \boldsymbol{X} of finite type over \boldsymbol{k}.
X is nonsingular at $x \Longleftrightarrow O_{x, X}$ is a regular loc. ring.

Proposition (infinitesimal lifting property of smoothness)

\boldsymbol{R} is a regular local ring if and only if for any surjective homo. $\boldsymbol{\pi}: \boldsymbol{A}^{\prime} \rightarrow \boldsymbol{A}$ of Artinian rings $\boldsymbol{A}, \boldsymbol{A}^{\prime}$, a ring homo. $\boldsymbol{u}: \boldsymbol{R} \rightarrow \boldsymbol{A}$ lifts to $\boldsymbol{u}^{\prime}: \boldsymbol{R} \rightarrow \boldsymbol{A}^{\prime}$.
$\boldsymbol{X}(\boldsymbol{A})=\{\boldsymbol{f}: \operatorname{Spec} \boldsymbol{A} \rightarrow \boldsymbol{X}\}$: the set of \boldsymbol{A}-valued points of \boldsymbol{X}.
\boldsymbol{X} is nonsingular \Longleftrightarrow the map $\boldsymbol{X}\left(\boldsymbol{A}^{\prime}\right) \rightarrow \boldsymbol{X}(\boldsymbol{A})$ is surjective for any surjection $\boldsymbol{u}: \boldsymbol{A}^{\prime} \rightarrow \boldsymbol{A}$ of Artinian rings.

If \boldsymbol{X} is singular, then the map $\boldsymbol{X}\left(\boldsymbol{A}^{\prime}\right) \rightarrow \boldsymbol{X}(\boldsymbol{A})$ is not surjective in general.

There exists a vector space \boldsymbol{V} over \boldsymbol{k} (called obstruction group) with the following property: for any surjection $\boldsymbol{\pi}: \boldsymbol{A}^{\prime} \rightarrow \boldsymbol{A}$ of Artinian rings and $\boldsymbol{u}: \boldsymbol{R} \rightarrow \boldsymbol{A}$, there exists an element $\mathbf{o b}\left(\boldsymbol{u}, \boldsymbol{A}^{\prime}\right) \in V$ and

$$
\mathbf{o b}\left(u, A^{\prime}\right)=0 \Longleftrightarrow u \text { lifts to } u^{\prime}: R \rightarrow A^{\prime}
$$

Here $\mathbf{o b}\left(\boldsymbol{u}, \boldsymbol{A}^{\prime}\right)$ is called the obstruction for \boldsymbol{u}.

First order deformation

$X \subset V$: a closed subscheme of V.
T : a scheme over k

Definition

A deformation of \boldsymbol{X} in \boldsymbol{V} over \boldsymbol{T} is a closed subscheme $X^{\prime} \subset V \times T$, flat over T, with $X_{0}=X$.

A deformation of X over the ring of dual number $\boldsymbol{D}:=\boldsymbol{k}[t] /\left(t^{2}\right)$ is called a first order deformation of \boldsymbol{X} in \boldsymbol{V}. By the univ. prop. of the Hilb. sch., there exists a one-to-one correspondence between
(1) \boldsymbol{D}-valued pts $\mathbf{S p e c} \boldsymbol{D} \rightarrow$ Hilb V sending $0 \mapsto[X]$.
(2) first order deformations of \boldsymbol{X} in \boldsymbol{V}

Applying the infinitesimal lifting prop. of smoothness to the surjection

$$
k[t] /\left(t^{3}\right) \rightarrow k[t] /\left(t^{2}\right) \rightarrow \mathbf{0},
$$

we have

Proposition

If Hilb \boldsymbol{V} is nonsingular at [\boldsymbol{X}], then every first order deformation of \boldsymbol{X} in \boldsymbol{V} lifts to a (second) order deformation of X in V over $\boldsymbol{k}[t] /\left(t^{3}\right)$.
$W \subset$ Hilb V : an irreducible closed subset of Hilb V.
$[X] \in W$: a closed point of W
$X_{\eta} \in W$: the generic point of W
Definition

- We say \boldsymbol{X} is unobstructed (resp. obstructed) (in \boldsymbol{V}) if Hilb V is nonsingular (resp. singular) at $[X]$.
- We say Hilb V is generically smooth (resp. generically non-reduced) along \boldsymbol{W} if Hilb \boldsymbol{V} is nonsingular (resp. singular) at $\boldsymbol{X}_{\boldsymbol{\eta}}$.

Mumford's example (a pathology)

$S \subset \mathbb{P}^{3}:$ a smooth cubic surface $\left(\simeq\right.$ Blow $\left._{6 \text { pts }} \mathbb{P}^{2}\right)$
$\boldsymbol{h}=\boldsymbol{S} \cap \mathbb{P}^{2}$: a hyperplane section
\boldsymbol{E} : a line on S
There exists a smooth connected curve

$$
C \in|4 h+2 E| \subset S \subset \mathbb{P}^{3},
$$

of degree 14 and genus 24 .
Then \boldsymbol{C} is parametrized by a locally closed subset

$$
W=W^{(56)} \subset H_{14,24} \subset \text { Hilb }^{s c} \mathbb{P}^{3}
$$

of the Hilbert scheme.

The locally closed subset $\boldsymbol{W}^{(56)}$ fits into the diagram
$\left\{C \subset \mathbb{P}^{3} \left\lvert\, \begin{array}{c}C \subset{ }^{\boldsymbol{3} S}(\text { smooth cubic }) \\ \text { and } C \sim 4 h+2 E\end{array}\right.\right\}^{-}=: \quad W^{(56)} \subset \boldsymbol{H}_{14,24}$

$$
\downarrow \mathbb{P}^{39} \text {-bundle }
$$

$$
\binom{\text { family of smooth }}{\text { cubic surfaces }}=: \quad U \quad \underset{\text { open }}{\subset}\left|O_{\mathbb{P}^{3}}(3)\right| \simeq \mathbb{P}^{\mathbf{1 9}},
$$

where we have $\operatorname{dim}\left|O_{S}(C)\right|=39$ and $h^{0}\left(N_{C / \mathbb{P}^{3}}\right)=57$.
$\boldsymbol{H}^{0}\left(\boldsymbol{N}_{C / \mathbb{P}^{3}}\right)=$ the tangent space of $\mathbf{H i l b}{ }^{s c} \mathbb{P}^{3}$ at $[\boldsymbol{C}]$.
We have the following inequalities:

$$
56=\operatorname{dim} W \leq \operatorname{dim}_{[C]} \operatorname{Hilb}^{s c} \mathbb{P}^{3} \leq h^{0}\left(N_{C / \mathbb{P}^{3}}\right)=\mathbf{5 7 .}
$$

Thus we have a dichotomy between (A) and (B) :
(A) \bar{W} is an irred. comp. of $\left(\text { Hilb }^{s c} \mathbb{P}^{3}\right)_{\text {red }}$. Hilb $^{s c} \mathbb{P}^{3}$ is generically non-reduced along \bar{W}.
(B) There exists an irred. comp. $\boldsymbol{W}^{\prime} \supsetneq \boldsymbol{W}$.

Hilb ${ }^{s c} \mathbb{P}^{3}$ is generically smooth along \bar{W}.
Which? \leadsto The answer is (A). (It suffices to prove Hilb $^{s c} \mathbb{P}^{3}$ is singular at the generic point $[\boldsymbol{C}]$ of \boldsymbol{W}. We will see later in §2)

History

Later many non-reduced components of Hilb ${ }^{s c} \mathbb{P}^{3}$ were found by Kleppe['85], Ellia['87], Gruson-Peskine['82], Floystad['93] and Nasu['05].
Moreover, to the question "How bad can the deformation space of an object be?", Vakil['06] has answered that

Law (Murphy's law in algebraic geometry)

Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.

A naive question

Nowadays non-reduced components of Hilbert schemes are not seldom. However,

Question

What is/are the most important reason(s) (if any) for their existence?

Our answer is the following: (at least in Mumford's example,) a ($-\mathbf{1}$)-curve \boldsymbol{E} (i.e. $\boldsymbol{E} \simeq \mathbb{P}^{1}, \boldsymbol{E}^{2}=-1$) on the (cubic) surface is the most important.

A generalization of Mumford's ex.

Theorem (Mukai-Nasu'09)

V : a smooth projective 3-fold. Suppose that
(1) there exists a curve $E \simeq \mathbb{P}^{1} \subset V$
s.t. $N_{E / V}$ is generated by global sections,
(2) there exists a smooth surface S s.t. $E \subset S \subset V$, $\left(E^{2}\right)_{S}=-1$ and $H^{1}\left(N_{S / V}\right)=p_{g}(S)=0$.
Then the Hilbert scheme Hilb ${ }^{s c} \boldsymbol{V}$ has infinitely many generically non-reduced components.

In Mumford's ex., $V=\mathbb{P}^{3}, S$: a smooth cubic, E : a line.

Examples

We have many ex. of generically non-reduced components of $\mathbf{H i l b}^{\text {sc }} \boldsymbol{V}$ for uniruled 3-folds \boldsymbol{V}.

Ex.

(1) Let \boldsymbol{V} be a Fano $\mathbf{3}$-fold and let $-\boldsymbol{K}_{\boldsymbol{V}} \boldsymbol{=} \boldsymbol{H}+\boldsymbol{H}^{\prime}$, where $\boldsymbol{H}, \boldsymbol{H}^{\prime}$: ample. ${ }^{\exists} \boldsymbol{S} \boldsymbol{\in}|\boldsymbol{H}|$ (smooth). If $S \neq \mathbb{P}^{2}$ nor $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then there exists a $(-\mathbf{1})-\mathbb{P}^{1} \boldsymbol{E}$ on \boldsymbol{S}.
(2) Let $\boldsymbol{V} \xrightarrow{\pi} \boldsymbol{F}$ be a \mathbb{P}^{1}-bundle over a smooth surface \boldsymbol{F} with $\boldsymbol{p}_{g}(\boldsymbol{F})=\mathbf{0}$. Let \boldsymbol{S}_{1} be a section of $\boldsymbol{\pi}$ and \boldsymbol{A} a sufficiently ample divisor on \boldsymbol{F}. Then there exists a smooth surface $\boldsymbol{S} \in\left|S_{1}+\pi^{*} A\right|$. Take a fiber \boldsymbol{E} of $\boldsymbol{S} \boldsymbol{\rightarrow} \boldsymbol{F}$.

§2 Infinitesimal analysis of the Hilbert scheme

In the analysis of Mumford's ex., we develop some techniques to computing the obstruction to deforming a curve on a uniruled 3 -fold ("obstructedness criterion").

Setting:
V : a uniruled 3-fold
S : a surface
E : (-1)-curve on S
C : a curve on S with $\boldsymbol{C}, \boldsymbol{E} \subset S \subset V$

Obst. Criterion
\qquad

Obstructions and Cup products

$\tilde{C} \subset V \times \operatorname{Spec} k[t] /\left(t^{2}\right):$
a first order (infinitesimal) deformation of \boldsymbol{C} in \boldsymbol{V} (i.e., a tangent vector of Hilb \boldsymbol{V} at [$\boldsymbol{C}]$)

$$
\begin{array}{lcc}
\tilde{C} & \in & \{1 \text { st ord. def. of } C\} \\
\mathfrak{I} & \uparrow^{\exists_{1-t o-1}} & \\
\alpha & \in & \operatorname{Hom}\left(\mathcal{I}_{C}, O_{C}\right)
\end{array} \quad\left(\simeq \boldsymbol{H}^{0}\left(N_{C / V}\right)\right)
$$

Define the cup product $\mathbf{o b}(\alpha)$ by

$$
\mathbf{o b}(\alpha):=\alpha \cup \mathrm{e} \cup \alpha \in \operatorname{Ext}^{1}\left(\mathcal{I}_{C}, O_{C}\right)
$$

where $\mathbf{e} \in \operatorname{Ext}^{1}\left(O_{C}, I_{C}\right)$ is the ext. class of an exact sequence $\mathbf{0} \rightarrow I_{C} \rightarrow O_{V} \rightarrow O_{C} \rightarrow \mathbf{0}$.

Fact

A first order deformation $\tilde{\boldsymbol{C}}$ lifts to a deformation over Spec $k[t] /\left(t^{3}\right)$ if and only if $\mathbf{o b}(\alpha)=\mathbf{0}$.

Remark

- If $\mathbf{o b}(\alpha) \neq \mathbf{0}$, then Hilb V is singular at $[C]$.
- If \boldsymbol{C} is a loc. complete intersection in \boldsymbol{V}, then $\mathbf{o b}(\boldsymbol{\alpha})$ is contained in the small group $\boldsymbol{H}^{1}\left(\boldsymbol{C}, \boldsymbol{N}_{C / V}\right)$ ($\subset \boldsymbol{E x t}^{1}\left(I_{C}, O_{C}\right)$).

Exterior components

Let $\boldsymbol{C} \subset \boldsymbol{S} \subset \boldsymbol{V}$ be a flag of a curve, a surface and a $\mathbf{3}$-fold (all smooth), and let $\pi_{C / S}:\left.N_{C / V} \rightarrow N_{S / V}\right|_{C}$ be the natural projection.

Definition

Define the exterior component of α and $\mathbf{o b}(\alpha)$ by

$$
\begin{array}{rll}
\pi_{S}(\alpha) & := & H^{0}\left(\pi_{C / S}\right)(\alpha) \\
\mathbf{o b}_{S}(\alpha) & := & H^{1}\left(\pi_{C / S}\right)(\mathbf{o b}(\alpha)),
\end{array}
$$

respectively.

Infinitesimal deformation with pole

Let $\boldsymbol{E} \subset S \subset V$ be a flag of a curve, a surface and a 3 -fold.

Definition

A rational section \boldsymbol{v} of $\boldsymbol{N}_{S / V}$ admitting a pole along \boldsymbol{E}, i.e.

$$
v \in H^{0}\left(N_{S / V}(E)\right) \backslash H^{0}\left(N_{S / V}\right),
$$

is called an infinitesimal deformation with a pole.
Remark (an interpretation)
Every inf. def. with a pole induces a 1st ord. def. of the open surface $S^{\circ}=\boldsymbol{S} \backslash \boldsymbol{E}$ in $\boldsymbol{V}^{\circ}=\boldsymbol{V} \backslash \boldsymbol{E}$ by the map

$$
H^{0}\left(N_{S / V}(E)\right) \hookrightarrow H^{0}\left(N_{S^{\circ} / V^{\circ}}\right)
$$

Obstructedness Criterion

Now we are ready to give a sufficient condition for a first order infinitesimal deformation of $\tilde{C}\left(\subset V \times \operatorname{Spec} k[t] /\left(t^{2}\right)\right.$) of \boldsymbol{C} in \boldsymbol{V} to be obstructed. i.e, $\tilde{\boldsymbol{C}}$ does not lift to any second order deformation $\tilde{\tilde{C}}\left(\subset V \times \operatorname{Spec} k[t] /\left(t^{3}\right)\right.$).

Condition ($れ$)

We consider $\alpha \in H^{0}\left(N_{C / V}\right)$ satisfying the following condition ($\hat{\boldsymbol{z}}$): the ext. comp. $\pi_{S}(\alpha)$ of α lifts to an inf. def. with a pole along E, say v, and its restriction $\left.v\right|_{E}$ to E does not belong to the image of the map $\pi_{E / S}(E):=\pi_{E / S} \otimes O_{S}(E)$.

$$
\begin{aligned}
& \begin{array}{ccr}
\boldsymbol{H}^{0}\left(\boldsymbol{N}_{C / V}\right) & \ni \alpha & \boldsymbol{H}^{0}\left(\boldsymbol{N}_{E / V}(\boldsymbol{E})\right) \\
\downarrow_{C / S} & \downarrow & \pi_{\pi_{E / S}(\boldsymbol{E})}
\end{array} \\
& \left.H^{0}\left(\left.N_{S / V}\right|_{C}\right) \quad \underset{\left(=\left.v\right|_{C}\right)}{\ni \pi_{S}(\alpha)} \stackrel{\text { res. }}{\longleftrightarrow} v \stackrel{\text { res. }}{\longmapsto}\right|_{E} \in H^{0}\left(\left.N_{S / V}(E)\right|_{E}\right) \\
& \cap \\
& H^{0}\left(\left.N_{S / V}(E)\right|_{C}\right) \stackrel{\text { res. }}{\leftarrow} \quad \boldsymbol{H}^{0}\left(\boldsymbol{N}_{S / V}(E)\right)
\end{aligned}
$$

Theorem (Mukai-Nasu'09)

Let $\boldsymbol{C}, \boldsymbol{E} \subset \boldsymbol{S} \subset \boldsymbol{V}$ be as above. Suppose that $\boldsymbol{E}^{2}<\mathbf{0}$ on \boldsymbol{S}, and let $\alpha \in \boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{N}_{\boldsymbol{C} / V}\right)$ satisfy ($\hat{\nu}$). If moreover,
(1) Let $\Delta:=\boldsymbol{C}+\left.\boldsymbol{K}_{V}\right|_{S}-2 \boldsymbol{E}$ on \boldsymbol{S}. Then

$$
\begin{equation*}
(\Delta \cdot E)_{S}=2\left(-E^{2}+g(E)-1\right) \tag{2.1}
\end{equation*}
$$

(2) the res. map $H^{0}(S, \Delta) \rightarrow H^{0}\left(E,\left.\Delta\right|_{E}\right)$ is surjective, then we have $\boldsymbol{o b}_{S}(\alpha) \neq 0$.

Remark

If \boldsymbol{E} is a $(-1)-\mathbb{P}^{1}$ on \boldsymbol{S}, then the RHS of (2.1) is equal to $\mathbf{0}$.

How to apply Obstructedness Criterion

(Mumford's ex. $\boldsymbol{V}=\mathbb{P}^{3}$)
Every general member $\boldsymbol{C} \subset \mathbb{P}^{3}$ of Mumford's ex.
$W^{(56)} \subset$ Hilb $^{s c} \mathbb{P}^{3}$ is contained in a smooth cubic surface S and $C \sim 4 \boldsymbol{h}+2 \boldsymbol{E}$ on S (E : a line, \boldsymbol{h} : a hyp. sect.).
Let $\boldsymbol{t}_{\boldsymbol{W}}$ denote the tangent space of \boldsymbol{W} at $[\boldsymbol{C}]$
$\left(\operatorname{dim} t_{W}=\operatorname{dim} W=56\right)$.
Then there exists a first order deformation

$$
\tilde{C} \longleftrightarrow \alpha \in H^{0}\left(C, N_{C / \mathbb{P}^{3}}\right) \backslash t_{W}
$$

of \boldsymbol{C} in \mathbb{P}^{3}.
Claim
$\mathbf{o b}(\alpha) \neq 0$.

Proof.

Since $\boldsymbol{H}^{1}\left(\boldsymbol{N}_{S / \mathbb{P}^{3}}(\boldsymbol{E}-\boldsymbol{C})\right)=\mathbf{0}$, the ext. comp.
$\pi_{C / S}(\alpha) \in H^{0}\left(\left.N_{S / \mathbb{P}^{3}}\right|_{C}\right)$ of α has a lifts to a rational section $\boldsymbol{v} \in \boldsymbol{H}^{\mathbf{0}}\left(\boldsymbol{N}_{S / \mathbb{P}^{3}}(\boldsymbol{E})\right)$ on \boldsymbol{S} (an inf. def. with a pole). By the key lemma below, the restriction $\left.\nu\right|_{E}$ to E is not contained $\operatorname{im} \pi_{E / S}(E)$. Since $C \sim 4 \boldsymbol{h}+\mathbf{2 E}=-\left.K_{\mathbb{P}^{3}}\right|_{S}+2 E$, the divisor Δ is zero. Thus the condition (1) and (2) are both satisfied.

Lemma (Key Lemma)

Since \boldsymbol{C} is general, the finite scheme $\boldsymbol{Z}:=\boldsymbol{C} \cap \boldsymbol{E}$ of length $\mathbf{2}$ is not cut out by any conic in $|\boldsymbol{h}-\boldsymbol{E}| \simeq \mathbb{P}^{\mathbf{1}}$ on \boldsymbol{S}.

§3 Obstruction to deforming curves on a quartic surface

Expectation

Let

$$
C \subset S \subset V
$$

be a flag of a curve, a surface, a 3-fold.
We study the deformation of \boldsymbol{C} in \boldsymbol{V} with a help of the intermediate surface \boldsymbol{S} and rational curves $\boldsymbol{E} \simeq \mathbb{P}^{1}$ on \boldsymbol{S}.

Expectation

- Negative curves $\boldsymbol{E}\left(\boldsymbol{E}^{2}<\mathbf{0}\right)$ on \boldsymbol{S} control the deformations of \boldsymbol{C} in \boldsymbol{V}.
- The obstructedness of \boldsymbol{C} follows from the geometry of \boldsymbol{S} and $\boldsymbol{E}, \boldsymbol{C}$.

We study the deformation of space curves

$$
C \subset \mathbb{P}^{3}
$$

under the assumption

Assumption

\boldsymbol{C} is contained in a smooth quartic surface $S \subset \mathbb{P}^{3}$.
Here \boldsymbol{S} is a K3 surface.
$\rho:=\rho(S)$: the Picard number of S.
$\mathbf{h}=O_{S}(\mathbf{1}) \in \operatorname{Pic} S$: the cls. of hyp. section of S.

Another assumption

If \boldsymbol{S} is general, then $\boldsymbol{\rho}=\mathbf{1}$. Then $\boldsymbol{C} \sim \boldsymbol{n h}$ for some $\boldsymbol{n} \in \mathbb{N}$, i.e., \boldsymbol{C} is a comp. int. on \boldsymbol{S}, and hence unobstructed (ACM).

Assume that

Assumption

There exists a rational curve $E \simeq \mathbb{P}^{1}$ on S.
For an irred. curve $\boldsymbol{E} \subset S$, we have

$$
E \simeq \mathbb{P}^{1} \Longleftrightarrow E^{2}=-2 . \quad((-2) \text {-curve })
$$

Mori's result

Theorem (Mori'84)

If there exists a smooth curve $\boldsymbol{E}_{\mathbf{0}} \nsim \boldsymbol{n h}$, on a smooth quartic surface \boldsymbol{S}_{0}, then there exists a smooth curve \boldsymbol{E} on a (general) smooth quartic surface S of the same degree and genus as \boldsymbol{E}_{0} satisfying

$$
\operatorname{Pic}(S)=\mathbb{Z} \mathbf{h} \oplus \mathbb{Z} E .
$$

By Mori's result, we may assume that $\boldsymbol{\rho}(\boldsymbol{S})=\mathbf{2}$ and

$$
\operatorname{Pic}(S)=\mathbb{Z} \mathbf{h} \oplus \mathbb{Z} E
$$

for studying the deformation of $C \subset S$ in \mathbb{P}^{3}.
Let $\boldsymbol{e}(=\mathbf{h} \cdot \boldsymbol{E})$ be the degree of \boldsymbol{E}. Then the intersection matrix on S is given by

$$
\left(\begin{array}{cc}
\mathbf{h}^{2} & \mathbf{h} \cdot E \\
\mathbf{h} \cdot E & E^{2}
\end{array}\right)=\left(\begin{array}{cc}
4 & e \\
e & -2
\end{array}\right) .
$$

Mori cone of smooth K3 surface ($\rho=2$)

\boldsymbol{X} : a smooth K 3 surface.
$\mathrm{NE}(X):=\left\{\sum a_{i}\left[C_{i}\right] \mid C_{i}\right.$: irred. curve on $\left.X, a_{i} \geq 0\right\}$
$\overline{\mathrm{NE}(X)}=\overline{\operatorname{Eff}(X)} \subset \operatorname{Pic}(X) \otimes_{\mathbb{Z}} \mathbb{R} \quad$ (Mori cone of X)
$\rho=2 \Longrightarrow \overline{\mathrm{NE}(X)}=\mathbb{R}_{\geq 0} x_{1}+\mathbb{R}_{\geq 0} x_{2}$.

Fact (A special case of Kovacs'94)

If $\rho=\mathbf{2}$, then $\overline{\mathbf{N E}(\boldsymbol{X})}$ is spanned by either:
(1) (-2)-curve and elliptic curve,
(2) two (-2)-curves,
(3) two elliptic curves, or

4 two non-effective divisors x_{1}, x_{2} with $x_{i}^{2}=0$.

Ex.
(1) \boldsymbol{E} is a line on $\boldsymbol{S}, \boldsymbol{F}:=\mathbf{h}-\boldsymbol{E} . \boldsymbol{F}^{\mathbf{2}}=\mathbf{0}$ (elliptic). Then the ext. rays are spanned by \boldsymbol{E} and \boldsymbol{F}.
(2) \boldsymbol{E}_{1} is a conic on $S, \boldsymbol{E}_{\mathbf{2}}:=\mathrm{h}-\boldsymbol{E}_{\mathbf{1}} . \boldsymbol{E}_{\mathbf{2}}^{\mathbf{2}}=\mathbf{- 2}$ (conic). Then the ext. rays are spanned by $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}$.
(3) F_{1} is a complete intersection (2) $\cap(2) \subset \mathbb{P}^{3}$. $\boldsymbol{F}_{\mathbf{2}}:=\mathbf{2 h}-\boldsymbol{F}_{1} . \boldsymbol{F}_{\mathbf{1}}^{\mathbf{2}}=\boldsymbol{F}_{\mathbf{2}}^{\mathbf{2}}=\mathbf{0}$ (two elliptics). Then the ext. rays are spanned by $\boldsymbol{F}_{\mathbf{1}}, \boldsymbol{F}_{\mathbf{2}}$.

Mori cone of smooth quartic surface $(\rho=2)$

Lemma

Assume ${ }^{\boldsymbol{\exists}} \boldsymbol{E} \simeq \mathbb{P}^{1}$ on a smooth quartic surface S and Pic $\boldsymbol{S}=\mathbb{Z} \mathbf{h} \oplus \mathbb{Z} \boldsymbol{E}$. Let \boldsymbol{e} be the degree of \boldsymbol{E}.
(1) If $\boldsymbol{e}=\mathbf{1}$, then $\overline{\mathrm{NE}(\boldsymbol{S})}$ is spanned by \boldsymbol{E} and elliptic curve $\boldsymbol{F}=\mathbf{h}-\boldsymbol{E}$.
(2) if $\boldsymbol{e} \geq \mathbf{2}$, then $\mathrm{NE}(\boldsymbol{S})$ is spanned by \boldsymbol{E} and \boldsymbol{E}^{\prime}, where $\boldsymbol{E}^{\prime} \simeq \mathbb{P}^{1}$.

Proof.

Solve the Pell's equation
$2 x^{2}+e x y-y^{2}=-1 \quad\left(\Longleftrightarrow \quad(x \mathrm{~h}+y E)^{2}=-2\right)$

the classes of the other (-2)-curves

The classes of the other (-2)-curve \boldsymbol{E}^{\prime} is explicitly obtained as follows:

$e=d(E)$	the class of (-2)-curve \boldsymbol{E}^{\prime}
2	h - E
3	16h-9E
4	$2 h-E$
5	8h-3E
6	3h-E
7	40h-11E
8	4h-E
9	106000h-23001E
!	:

Theorem

Let $\boldsymbol{S} \subset \mathbb{P}^{3}$ be a smooth quartic surface containing a line \boldsymbol{E}.
Suppose that Pic $S=\mathbb{Z} \mathbf{h} \oplus \mathbb{Z} \boldsymbol{E}$.
Let $\boldsymbol{C} \subset \boldsymbol{S}$ be a curve, let $\boldsymbol{F}:=\mathbf{h}-\boldsymbol{E}$, and suppose that $D:=C-4 \mathrm{~h} \geq 0$.
Then
(1) If $\boldsymbol{D} \cdot \boldsymbol{E} \geq \mathbf{- 1}$ and $\boldsymbol{D} \neq \boldsymbol{n} \boldsymbol{F}$ for any $\boldsymbol{n} \geq \mathbf{2}$, or $\boldsymbol{D}=\boldsymbol{E}$, then C is unobstructed.
(2) If $\boldsymbol{D} \cdot \boldsymbol{E}=\mathbf{- 2}$ and $\boldsymbol{D} \neq \boldsymbol{E}$, then \boldsymbol{C} is obstructed.

Theorem

Let $S \subset \mathbb{P}^{3}$ be a smooth quartic surface containing a rational curve $E \simeq \mathbb{P}^{\mathbf{1}}$ of degree $\boldsymbol{e} \geq \mathbf{2}$. Suppose that

$$
\text { Pic } S=\mathbb{Z} \mathbf{h} \oplus \mathbb{Z} E .
$$

Let \boldsymbol{E}^{\prime} be another (-2)-curve on \boldsymbol{S}, and let $\boldsymbol{C} \subset \boldsymbol{S}$ be a curve, and suppose that $D:=C-4 \mathrm{~h} \geq 0$.
(1) If \boldsymbol{D} is nef, $\boldsymbol{D}=\boldsymbol{E}$ or $\boldsymbol{D}=\boldsymbol{E}^{\prime}$, then \boldsymbol{C} is unobstructed.
(2) If $\boldsymbol{D} \cdot \boldsymbol{E}=\mathbf{- 2}$ and $\boldsymbol{D} \neq \boldsymbol{E}$, then \boldsymbol{C} is obstructed.

Thank you for your attention!

Reference

S. Mukai and H. Nasu,

Obstructions to deforming curves on a 3-fold I: A generalization of Mumford's example and an application to Hom schemes.
J. Algebraic Geom., 18(2009), 691-709
H. Nasu,

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold, Annales de L'Institut Fourier, 60(2010), no.4, 1289-1316.

