Obstructions to deforming space curves and non-reduced components of the Hilbert scheme

Hirokazu Nasu

Tokai University

March 5, 2013, @HIOA

§1 Introduction

Hilbert scheme

```
V: a projective variety over k = \overline{k}. char k = 0 H: an ample divisor on V.
```

Hilbert scheme of space curves

 $V = \mathbb{P}^3$: the projective 3-space over k

 $C \subset \mathbb{P}^3$: a closed subscheme of dim = 1

d(C): degree of C (= $\sharp(C \cap H)$)

g(C): genus of C (as a cpt. Riemann surf.)

We study the Hilbert scheme of space curves:

$$H_{d,g}^{S} := \operatorname{Hilb}_{d,g}^{sc} \mathbb{P}^{3}$$

$$= \left\{ C \subset \mathbb{P}^{3} \mid \operatorname{smooth and connected} \atop d(C) = d \text{ and } g(C) = g \right\}$$

Why we study $H_{d,g}^{S}$?

Some reasons are:

- For every smooth curve C, there exists a curve $C' \subset \mathbb{P}^3$ s.t. $C' \simeq C$.
- Hilb^{sc} $\mathbb{P}^3 = \bigsqcup_{d,g} H_{d,g}^S$
- More recently, the classification of the space curves has been applied to the study of bir. automorphism

$$\Phi: \mathbb{P}^3 \to \mathbb{P}^3$$

(for the construction of Sarkisov links [Blanc-Lamy,2012]).

Some basic facts

- If $g \le d-3$, then $H_{d,g}^S$ is irreducible [Ein,'86] and $H_{d,g}^S$ is generically smooth of expected dimension 4d.
- In general, $H_{d,g}^S$ can become reducible, e.g $H_{9,10}^S = W_1^{(36)} \sqcup W_2^{(36)}$ [Noether].
- the Hilbert scheme of arith. Cohen-Macaulay (ACM, for short) curves are smooth [Ellingsrud, '75].

$$C \subset \mathbb{P}^3$$
: ACM $\stackrel{\text{def}}{\Longleftrightarrow} H^1(\mathbb{P}^3, I_C(l)) = 0$ for all $l \in \mathbb{Z}$

• $H_{d,g}^{S}$ can have many generically non-reduced irreducible components, e.g. [Mumford'62], [Kleppe'87], [Ellia'87], [Gruson-Peskine'82], etc.

Infinitesimal property of the Hilbert scheme

V: a projective variety over k

 $C \subset V$: a subvariety of V

 I_C : the ideal sheaf defining C in V

 $N_{C/V}$: the normal sheaf of C in V

Fact (Tangent space and Obstruction group)

- The tangent space of Hilb V at [C] is isomorphic to $\operatorname{Hom}(I_C, O_C) \simeq H^0(C, N_{C/V})$
- **2** Every obstruction ob to deforming C in V is contained in the group $\operatorname{Ext}^1(I_C, O_C)$. If C is a locally complete intersection in V, then ob is contained in $H^1(C, \mathcal{N}_{C/V})$

 $W \subset Hilb V$: an irreducible closed subset of Hilb V.

 $[C] \in W$: a closed point of W $C_{\eta} \in W$: the generic point of W

Definition

- We say C is unobstructed (resp. obstructed) (in V) if
 Hilb V is nonsingular (resp. singular) at [C].
- We say **Hilb** V is generically smooth (resp. generically non-reduced) along W if **Hilb** V is nonsingular (resp. singular) at C_{η} .

Mumford's example (a pathology)

 $S \subset \mathbb{P}^3$: a smooth cubic surface ($\simeq Blow_{6 pts} \mathbb{P}^2$)

 $h = S \cap \mathbb{P}^2$: a hyperplane section

E: a line on S

There exists a smooth connected curve

$$C \in |4h + 2E| \subset S \subset \mathbb{P}^3,$$

of degree 14 and genus 24.

Then C is parametrized by a locally closed subset

$$W = W^{(56)} \subset H_{14,24}^S \subset \operatorname{Hilb}^{sc} \mathbb{P}^3$$

of the Hilbert scheme.

The locally closed subset $W^{(56)}$ fits into the diagram

$$\left\{ C \subset \mathbb{P}^3 \,\middle|\, {\overset{C}{\circ}}^{\exists S \text{ (smooth cubic)}} \right\}^- =: \quad W^{(56)} \subset H^S_{14,24} \\ \qquad \qquad \qquad \downarrow \mathbb{P}^{39}\text{-bundle} \\ \left({\text{family of smooth}}_{\text{cubic surfaces}} \right) =: \quad U \quad \underset{\text{open}}{\subset} |O_{\mathbb{P}^3}(3)| \simeq \mathbb{P}^{19},$$

where we have $\dim |O_S(C)| = 39$ and $h^0(N_{C/\mathbb{P}^3}) = 57$.

 $H^0(N_{C/\mathbb{P}^3})$ = the tangent space of $\operatorname{Hilb}^{sc}\mathbb{P}^3$ at [C]. We have the following inequalities:

$$56 = \dim W \le \dim_{[C]} \operatorname{Hilb}^{sc} \mathbb{P}^3 \le h^0(N_{C/\mathbb{P}^3}) = 57.$$

Thus we have a dichotomy between (A) and (B):

- \overline{W} is an irred. comp. of $(\mathbf{Hilb}^{sc} \, \mathbb{P}^3)_{red}$. $\mathbf{Hilb}^{sc} \, \mathbb{P}^3$ is generically non-reduced along \overline{W} .
- There exists an irred. comp. $W' \supseteq W$.

 Hilb^{sc} \mathbb{P}^3 is generically smooth along W.

Which? \longrightarrow The answer is (A). (It suffices to prove $\mathbf{Hilb}^{sc} \mathbb{P}^3$ is singular at the generic point [C] of W. We will see later in §2)

History

Later many non-reduced components of $\mathbf{Hilb}^{sc} \mathbb{P}^3$ were found by Kleppe['85], Ellia['87], Gruson-Peskine['82], Fløystad['93] and Nasu['05].

Moreover, to the question "How bad can the deformation space of an object be?", Vakil['06] has answered that

Law (Murphy's law in algebraic geometry)

Unless there is some a priori reason otherwise, the deformation space may be as bad as possible.

A naive question

Nowadays non-reduced components of Hilbert schemes are not seldom. However,

Question

What is/are the most important reason(s) (if any) for their existence?

Our answer is the following: (at least in Mumford's example,) a (-1)-curve E (i.e. $E \simeq \mathbb{P}^1$, $E^2 = -1$) on the (cubic) surface is the most important.

A generalization of Mumford's ex.

Theorem (Mukai-Nasu'09)

V: a smooth projective 3-fold. Suppose that

- there exists a curve $E \simeq \mathbb{P}^1 \subset V$ s.t. $N_{E/V}$ is generated by global se
- s.t. $N_{E/V}$ is generated by global sections, there exists a smooth surface S s.t. $E \subset S \subset V$, $(E^2)_S = -1$ and $H^1(N_{S/V}) = p_{\varrho}(S) = 0$.

Then the Hilbert scheme $\mathbf{Hilb}^{sc}\ V$ has infinitely many generically non-reduced components.

In Mumford's ex., $V = \mathbb{P}^3$, S: a smooth cubic, E: a line.

Examples

We have many ex. of generically non-reduced components of $\mathbf{Hilb}^{sc} V$ for uniruled 3-folds V.

Ex.

- Let V be a Fano 3-fold and let $-K_V = H + H'$, where H, H': ample. ${}^{\exists}S \in |H|$ (smooth). If $S \not\simeq \mathbb{P}^2$ nor $\mathbb{P}^1 \times \mathbb{P}^1$, then there exists a (-1)- \mathbb{P}^1 E on S.
- 2 Let $V \xrightarrow{\pi} F$ be a \mathbb{P}^1 -bundle over a smooth surface F with $p_g(F) = 0$. Let S_1 be a section of π and A a sufficiently ample divisor on F. Then there exists a smooth surface $S \in |S_1 + \pi^* A|$. Take a fiber E of $S \to F$.

§2 Infinitesimal analysis of the Hilbert scheme

In the analysis of Mumford's ex., we develop some techniques to computing the obstruction to deforming a curve on a uniruled 3-fold ("obstructedness criterion").

Setting:

V: a uniruled 3-fold

S: a surface

E: (-1)- \mathbb{P}^1 on S

 $\emph{\textbf{C}}$: a curve on $\emph{\textbf{S}}$

with $C \subset S \subset V$

Obst. Criterion

Non-reduced components of **Hilb**^{sc} *V*

Obstructions and Cup products

$$\tilde{C} \subset V \times \operatorname{Spec} k[t]/(t^2)$$
: a first order (infinitesimal) deformation of C in V (i.e.,a tangent vector of $\mathbf{Hilb}\ V$ at $[C]$)

$$\tilde{C} \in \{1 \text{st ord. def. of } C\}$$

$$\updownarrow \qquad \qquad \updownarrow^{\exists 1 \text{-to-1}}$$

$$\alpha \in \operatorname{Hom}(I_C, O_C) \qquad (\simeq H^0(N_{C/V}))$$

Define the cup product $ob(\alpha)$ by

$$ob(\alpha) := \alpha \cup e \cup \alpha \in Ext^1(I_C, O_C),$$

where $\mathbf{e} \in \operatorname{Ext}^1(O_C, I_C)$ is the ext. class of an exact sequence $\mathbf{0} \to I_C \to O_V \to O_C \to \mathbf{0}$.

Fact

A first order deformation \tilde{C} lifts to a deformation over $\operatorname{Spec} k[t]/(t^3)$ if and only if $\operatorname{ob}(\alpha) = 0$.

Remark

- If $ob(\alpha) \neq 0$, then **Hilb** V is singular at [C].
- If C is a loc. complete intersection in V, then $ob(\alpha)$ is contained in the small group $H^1(C, N_{C/V})$ ($\subset Ext^1(I_C, O_C)$).

Exterior components

Let $C \subset S \subset V$ be a flag of a curve, a surface and a 3-fold (all smooth), and let $\pi_{C/S}: N_{C/V} \to N_{S/V}\big|_C$ be the natural projection.

Definition

Define the *exterior component* of α and $ob(\alpha)$ by

$$\pi_S(\alpha) := H^0(\pi_{C/S})(\alpha)$$

 $ob_S(\alpha) := H^1(\pi_{C/S})(ob(\alpha)),$

respectively.

Infinitesimal deformation with pole

Let $E \subset S \subset V$ be a flag of a curve, a surface and a 3-fold.

Definition

A rational section v of $N_{S/V}$ admitting a pole along E, i.e.

$$v \in H^0(N_{S/V}(E)) \setminus H^0(N_{S/V}),$$

is called an infinitesimal deformation with a pole.

Remark (an interpretation)

Every inf. def. with a pole induces a 1st ord. def. of the open surface $S^{\circ} = S \setminus E$ in $V^{\circ} = V \setminus E$ by the map

$$H^0(N_{S/V}(E)) \hookrightarrow H^0(N_{S^{\circ}/V^{\circ}})$$

Obstructedness Criterion

Now we are ready to give a sufficient condition for a first order infinitesimal deformation of \tilde{C} ($\subset V \times \operatorname{Spec} k[t]/(t^2)$) of C in V to a second order deformation $\tilde{\tilde{C}}$ ($\subset V \times \operatorname{Spec} k[t]/(t^3)$).

Condition (\$\times)

We consider $\alpha \in H^0(N_{C/V})$ satisfying the following condition $(\stackrel{\sim}{\succsim})$: the ext. comp. $\pi_S(\alpha)$ of α lifts to an inf. def. with a pole along E, say ν , and its restriction $\nu\big|_E$ to E does not belong to the image of the map $\pi_{E/S}(E) := \pi_{E/S} \otimes O_S(E)$.

Theorem (Mukai-Nasu'09)

Let $C, E \subset S \subset V$ be as above. Suppose that $E^2 < 0$ on S, and let $\alpha \in H^0(N_{C/V})$ satisfy (\diamondsuit) . If moreover,

• Let $\Delta := C + K_V|_S - 2E$ on S. Then

$$(\Delta \cdot E)_S = 2(-E^2 + g(E) - 1) \tag{2.1}$$

② the res. map $H^0(S, \Delta) \to H^0(E, \Delta|_E)$ is surjective, then we have $\mathbf{ob}_S(\alpha) \neq 0$.

Remark

If E is a (-1)- \mathbb{P}^1 on S, then the RHS of (2.1) is equal to 0.

How to apply Obstructedness Criterion

(Mumford's ex. $V = \mathbb{P}^3$)

Every general member $C \subset \mathbb{P}^3$ of Mumford's ex.

 $W^{(56)} \subset \operatorname{Hilb}^{sc} \mathbb{P}^3$ is contained in a smooth cubic surface S and $C \sim 4h + 2E$ on S (E: a line, h: a hyp. sect.).

Let t_W denote the tangent space of W at [C]

 $(\dim t_W = \dim W = 56).$

Then there exists a first order deformation

$$\tilde{C} \longleftrightarrow \alpha \in H^0(C, N_{C/\mathbb{P}^3}) \setminus t_W.$$

of C in \mathbb{P}^3 .

Claim

 $ob(\alpha) \neq 0$.

Proof.

Since $H^1(N_{S/\mathbb{P}^3}(E-C))=0$, the ext. comp. $\pi_{C/S}(\alpha)\in H^0(N_{S/\mathbb{P}^3}\big|_C)$ of α has a lifts to a rational section $v\in H^0(N_{S/\mathbb{P}^3}(E))$ on S (an inf. def. with a pole). By the key lemma below, the restriction $v\big|_E$ to E is not contained im $\pi_{E/S}(E)$. Since $C\sim 4h+2E=-K_{\mathbb{P}^3}\big|_S+2E$, the divisor Δ is zero. Thus the condition (1) and (2) are both satisfied. \square

Lemma (Key Lemma)

Since C is general, the finite scheme $Z := C \cap E$ of length 2 is not cut out by any conic in $|h - E| \simeq \mathbb{P}^1$ on S.

- §3.1 Minimal degree and Maximal subsets
- §3.2 Kleppe's conjecture
- 3.3 Main Result

§3 Application to Kleppe's conjecture

- §3.1 Minimal degree and Maximal subsets
 - 3.2 Kleppe's conjecture
- §3.3 Main Result

Minimal degree s(W) for $W \subset H_{d,g}^S$

Hilb^{sc} \mathbb{P}^3 : the Hilb. sch. of sm. con. curves $C \subset \mathbb{P}^3$ $H^S_{d,g} \subset \text{Hilb}^{sc} \mathbb{P}^3$: the subsch. of curves of deg. d and gen. g $W \subset H^S_{d,g}$: an irreducible closed subset $C \in W$: a general member of W

Definition (minimal degree of *W*)

$$s(W) := \min \left\{ s \in \mathbb{N} \mid H^0(\mathbb{P}^3, I_C(s)) \neq 0 \right\}$$

= the minimal degree of a surface $S \supset C$

- §3.1 Minimal degree and Maximal subsets
- §3.2 Kleppe's conjecture
- §3.3 Main Result

s-maximal subsets of $H_{d,g}^S$

Definition (Kleppe'87)

 $W \subset H_{d,g}^S$ is called s(W)-maximal if it is maximal w.r.t s(W).

W: s-maximal $\Longrightarrow s(V) > s$ for any closed irreducible subset $V \supseteq W$.

Ex. (Mumford's ex.)

$$W = \left\{ C \subset \mathbb{P}^3 \mid C \subset {}^{\exists}S \text{ (sm. cubic) and } C \sim 4h + 2E \right\}^{-}$$

is a 3-maximal subset of $H_{14,24}^S$.

§3.2 Kleppe's conjecture

§3.3 Main Result

First properties of s-maximal subsets

In what follows, we assume that

- $igotimes W \subset H_{d,g}^S$: a s-maximal subset
- 2 a general member $C \subset S$, where S: a smooth surface of deg s.

Proposition

Suppose that $s \le 4$ and $d > s^2$. Then

- If C is not a c.i. when s = 4, then $\dim W = (4 s)d + g + {s+3 \choose s} 2$
- If $H^1(\mathbb{P}^3, I_C(s)) = 0$ and if C is not a c.i. when s = 4, then W is a generically smooth component of $H_{d,g}^S$.

§3.2 Kleppe's conjecture

§3.3 Main Result

3-maximal subsets of $H_{d,g}^S$

Let s = 3. If $d > 3^2 = 9$, then dim W = d + g + 18.

Fact

Every irreducible component of $H^S_{d,g}$ is of dimension greater than or equal to 4d (= $\chi(N_{C/\mathbb{P}^3})$)

Thus if W is a component, then

$$\dim W \ge 4d \iff g \ge 3d - 18.$$

§3.3 Main Result

Conjecture

Conjecture (Kleppe'87, a ver. modified by Ellia)

Let d > 9, $g \ge 3d - 18$, and let $W \subset H_{d,g}^S$ be a 3-maximal subset. If a general member C of W satisfies

$$\bullet$$
 $H^1(\mathbb{P}^3, I_C(3)) \neq 0$, and

2
$$H^1(\mathbb{P}^3, I_C(1)) = 0$$

then W is a gen. non-reduced irred. component of $oldsymbol{H}_{d,g}^S$.

- §3.1 Minimal degree and Maximal subsets
- §3.2 Kleppe's conjecture
- §3.3 Main Result

Remark

- The linearly normality assumption $(H^1(I_C(1)) = 0)$ was missing in the original ver. of the conjecture. (pointed out by Ellia['87] with a counterexample).
- ② The tangential dimension $h^0(N_{C/\mathbb{P}^3})$ of $H^S_{d,g}$ at [C] is greater than $\dim W$ by $h^1(\mathcal{I}_C(3))$.
- 3 The subset W can be described more explicitly in terms of the coordinate $(a; b_1, \ldots, b_6)$ of C in $Pic S \simeq \mathbb{Z}^7$

Known results

In the following cases, Kleppe's conjecture is known to be true.

$$g > 7 + \frac{(d-2)^2}{8}$$
 and $d \ge 18$ [Kleppe'87]

②
$$d \ge 21$$
 and $g > G(d, 5)$ [Ellia'87] ¹

1
$$h^1(\mathbb{P}^3, I_C(3)) = 1$$
 [Nasu'05] ²

 $^{^1}G(d,5)$ denotes the max. genus of curves of degree d, not contained in any quartic surface. $G(d,5) \approx d^2/10$ for d >> 0.

²proved by computing cup products

§3.2 Kleppe's conjecture

§3.3 Main Result

Let d>9 and $g\geq 3d-18$ and let $W\subset H_{d,g}^S$ and C as in Kleppe's conjecture.

Lemma

The following conditions are equivalent:

- **①** *C* is quadratically normal, i.e., $H^1(\mathbb{P}^3, I_C(2)) = 0$.
- ② $(C \cdot E) \ge 2$ for every line E on S
- 3 Let $C \sim (a; b_1, ..., b_6)$ with some basis of Pic $S \simeq \mathbb{Z}^7$. Then $b_i \geq 2$ for all $i = 1, \dots, 6$.
- **1** Let $h \in \text{Pic } S$ be the cls. of hyp. sections. The base locus of the complete lin. sys. |C 3h| contains no double lines $2E_i$, and no triple lines $3E_i$.

- §3.1 Minimal degree and Maximal subsets
- §3.2 Kleppe's conjecture
 - §3.3 Main Result

Main Theorem

Theorem (—'09)

Kleppe's conjecture is true if *C* is quadratically normal, i.e.,

$$H^1(\mathbb{P}^3, I_C(2)) = 0.$$

§3.2 Kleppe's conjecture

§3.3 Main Result

How to prove Main Theorem

As we see in the Mumford's ex., it suffices to prove that $ob(\alpha) \neq 0$ for every

$$\alpha \in H^0(C, N_{C/\mathbb{P}^3}) \setminus t_W,$$

where t_W is the tangnet space of W at [C]. Note that the ext. comp. $\pi_S(\alpha)$ of α lifts to a rational section

$$v \in H^0(S, N_{S/\mathbb{P}^3}(F)) \setminus H^0(S, N_{S/\mathbb{P}^3}),$$

where F is the fixed component of the lin. sys. |C - 3h|. Then we apply the obstructedness criterion for a first order deformation $\tilde{C} \longleftrightarrow \alpha$ of C in \mathbb{P}^3 .

A more recent result

Another progress has been made:

Theorem (Kleppe'12)

Kleppe's conjecture is true provided that;

- $b_6 = 2, b_5 \ge 4, d \ge 21$ and $(a; b_1, \dots, b_6) \ne (\lambda + 12, \lambda + 4, 4, \dots, 4, 2), \forall \lambda \ge 2,$
- ② $b_6 = 1, b_5 \ge 6, d \ge 35$ and $(a; b_1, ..., b_6) \ne (\lambda + 18, \lambda + 6, 6, ..., 6, 1), \forall \lambda \ge 2,$
- **3** $b_6 = 1, b_5 = 5, b_4 \ge 7, d \ge 35$ and $(a; b_1, ..., b_6) \ne (\lambda + 21, \lambda + 7, 7, ..., 7, 5, 1), ∀\lambda \ge 2.$

§4 Obstruction to deforming curves on a quartic surface

Quartic surfaces containing a line

Similarly, we can compute the obstructions to deforming curves on a smooth quartic surface.

Assume that:

 $S \subset \mathbb{P}^3$: a smooth quartic surface (a K3 surface),

E: a line on S,

 $F (\sim h - E)$: a plane cubic curve cut out by a plane $H \supset E$,

 $\operatorname{Pic} S \simeq \mathbb{Z} E \oplus \mathbb{Z} F$, and the intersection matrix is given by

$$\begin{pmatrix} E^2 & E \cdot F \\ E \cdot F & F^2 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ 3 & 0 \end{pmatrix}.$$

Then every curve C on S is expressed in Pic S by

$$C \sim aE + bF$$
 $(a, b \ge 0)$

with d = a + 3b and $g = 3ab - b^2 + 1$. Let W be a 4-maximal subset containing [C]. If d > 16 and $a \neq b$, then

$$\dim W = g + 33.$$

Moreover, we see that....

Theorem (Kleppe'12 (with Ottem))

Suppose that d > 16 and 4 < a < b. Then

- 1 If $3b 2a \ge 3$, then $h^1(I_C(4)) = 0$. In particular, W is a generically smooth component of $H_{d,g}^S$.
- If $3b 2a \le 2$, then $h^1(I_C(4)) \ne 0$. Moreover, W is a generically non-reduced component of $H_{d,g}^S$.

In fact, we see that

$$h^{1}(\mathbb{P}^{3}, I_{C}(4)) = \begin{cases} 1 & (3b - 2a = 2) \\ 2 & (3b - 2a = 1) \\ 4 & (3b - 2a = 0) \end{cases}$$

By computing cup products, we have proved the following:

Theorem

Let C and W be as in the thm. If

$$3b-2a=2 \ (\Rightarrow h^1(\mathbb{P}^3, I_C(4))=1),$$

then there exists a first order deformation \tilde{C} of C in \mathbb{P}^3 which does not lift to a deformation over $\operatorname{Spec} k[t]/(t^3)$.

However, for the other case (where 3b-2a=1,0) we have not yet proved the obstructedness of a general $C \in W$.

Quartic surfaces containing a conic

We have many variations of a smooth quartic surface S containing $E \simeq \mathbb{P}^1$, e.g., the one containing conics E_1, E_2 .

Assume that:

 $S \subset \mathbb{P}^3$: a smooth quartic surface (a K3 surface),

 E_1, E_2 : conics on S such that $h \sim E_1 + E_2$,

 $\operatorname{Pic} S \simeq \mathbb{Z} E_1 \oplus \mathbb{Z} E_2$, and the intersection matrix is given by

$$\begin{pmatrix} E_1^2 & E_1 \cdot E_2 \\ E_1 \cdot E_2 & E_2^2 \end{pmatrix} = \begin{pmatrix} -2 & 4 \\ 4 & -2 \end{pmatrix}$$

Then every curve C on S is expressed in Pic S by

$$C \sim aE + bF$$
 $(a, b \ge 0)$

with d = 2a + 2b and $g = 4ab - a^2 - b^2 + 1$. Let W be a 4-maximal subset containing [C]. If d > 16 and $a \neq b$, then

$$\dim W = g + 33.$$

Moreover, we see that....

Theorem (Kleppe'12 (with Ottem))

Suppose that d > 16 and $a \neq b > 4$. If

$$\frac{b+4}{2} \le a \le 2b-4,$$

then $h^1(\mathbb{P}^3, I_C(4)) = 0$. In particular, W is a generically smooth component of $H^S_{d,\sigma}$.

Otherwise, we see that

$$h^{1}(\mathbb{P}^{3}, I_{C}(4)) = \begin{cases} 1 & (2b - a = 3) \\ 4 & (2b - a = 2) \\ 9 & (2b - a = 1) \\ 16 & (2b - a = 0) \end{cases}$$

By computing cup products, we have proved the following:

Theorem

Let C be a general member of W, and suppose that

$$2b - a = 3 \quad (\Rightarrow h^1(\mathbb{P}^3, I_C(4)) = 1).$$

Then there exists a first order deformation \tilde{C} of C in \mathbb{P}^3 which does not lift to a deformation over $\operatorname{Spec} k[t]/(t^3)$.

However, for the other case (where 2b - a = 2, 1, 0) we have not yet proved the obstructedness of a general $C \in W$.

Reference

S. Mukai and H. Nasu,

Obstructions to deforming curves on a 3-fold I: A generalization of Mumford's example and an application to Hom schemes.

J. Algebraic Geom., 18(2009), 691-709

H. Nasu,

Obstructions to deforming curves on a 3-fold, II: Deformations of degenerate curves on a del Pezzo 3-fold,

Annales de L'Institut Fourier, 60(2010), no.4, 1289-1316.